Reinforcement learning for robotic flow shop scheduling with processing time variations
We address a robotic flow shop scheduling problem where two part types are processed on each given set of dedicated machines. A single robot moving on a fixed rail transports one part at a time, and the processing times of the parts vary on the machines within a given time interval. We use a reinfor...
Gespeichert in:
Veröffentlicht in: | International journal of production research 2022-04, Vol.60 (7), p.2346-2368 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2368 |
---|---|
container_issue | 7 |
container_start_page | 2346 |
container_title | International journal of production research |
container_volume | 60 |
creator | Lee, Jun-Ho Kim, Hyun-Jung |
description | We address a robotic flow shop scheduling problem where two part types are processed on each given set of dedicated machines. A single robot moving on a fixed rail transports one part at a time, and the processing times of the parts vary on the machines within a given time interval. We use a reinforcement learning (RL) approach to obtain efficient robot task sequences to minimise makespan. We model the problem with a Petri net used for a RLenvironment and develop a lower bound for the makespan. We then define states, actions, and rewards based on the Petri net model; further, we show that the RL approach works better than the first-in-first-out (FIFO) rule and the reverse sequence (RS), which is extensively used for cyclic scheduling of a robotic flow shop; moreover, the gap between the makespan from the proposed algorithm and a lower bound is not large; finally, the makespan from the RL method is compared to an optimal solution in a relaxed problem. This research shows the applicability of RL for the scheduling of robotic flow shops and its efficiency by comparing it to FIFO, RS and a lower bound. This work can be easily extended to several other variants of robotic flow shop scheduling problems. |
doi_str_mv | 10.1080/00207543.2021.1887533 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2770818147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770818147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d9f9211748786e850481bc15f3289f8a10ef384f1fdf69a51d2affdaa69764103</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKc_QQh43ZnTtM3pnTL8goEgit6FLE1cRtvMpHPs39taxTvPTTjhefOGh5BzYDNgyC4ZS5nIMz5LWQozQBQ55wdkArwokhzx7ZBMBiYZoGNyEuOa9ZNjNiGvT8a11gdtGtN2tDYqtK59p_0VDX7pO6eprf2OxpXf0KhXptrWA7Bz3YpugtcmxmHvXGPopwpOdc638ZQcWVVHc_ZzTsnL7c3z_D5ZPN49zK8XieYF75KqtGUKIDIUWBjMWYaw1JBbnmJpUQEzlmNmwVa2KFUOVaqsrZQqSlFkwPiUXIzv9l_52JrYybXfhravlKkQDAEhEz2Vj5QOPsZgrNwE16iwl8Dk4FD-OpSDQ_njsM_RMWe0b138SyEILEsoBuRqRL41NmrnQ13JTu1rH2xQre5j_P-WLzVag34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770818147</pqid></control><display><type>article</type><title>Reinforcement learning for robotic flow shop scheduling with processing time variations</title><source>Taylor & Francis</source><source>EBSCOhost Business Source Complete</source><creator>Lee, Jun-Ho ; Kim, Hyun-Jung</creator><creatorcontrib>Lee, Jun-Ho ; Kim, Hyun-Jung</creatorcontrib><description>We address a robotic flow shop scheduling problem where two part types are processed on each given set of dedicated machines. A single robot moving on a fixed rail transports one part at a time, and the processing times of the parts vary on the machines within a given time interval. We use a reinforcement learning (RL) approach to obtain efficient robot task sequences to minimise makespan. We model the problem with a Petri net used for a RLenvironment and develop a lower bound for the makespan. We then define states, actions, and rewards based on the Petri net model; further, we show that the RL approach works better than the first-in-first-out (FIFO) rule and the reverse sequence (RS), which is extensively used for cyclic scheduling of a robotic flow shop; moreover, the gap between the makespan from the proposed algorithm and a lower bound is not large; finally, the makespan from the RL method is compared to an optimal solution in a relaxed problem. This research shows the applicability of RL for the scheduling of robotic flow shops and its efficiency by comparing it to FIFO, RS and a lower bound. This work can be easily extended to several other variants of robotic flow shop scheduling problems.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2021.1887533</identifier><language>eng</language><publisher>London: Taylor & Francis</publisher><subject>Algorithms ; Job shop scheduling ; Lower bounds ; Machine shops ; Petri net ; Petri nets ; Processing time variation ; reinforcement learning ; robotic flow shop ; Robotics ; Robots ; Scheduling</subject><ispartof>International journal of production research, 2022-04, Vol.60 (7), p.2346-2368</ispartof><rights>2021 Informa UK Limited, trading as Taylor & Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d9f9211748786e850481bc15f3289f8a10ef384f1fdf69a51d2affdaa69764103</citedby><cites>FETCH-LOGICAL-c363t-d9f9211748786e850481bc15f3289f8a10ef384f1fdf69a51d2affdaa69764103</cites><orcidid>0000-0001-7190-3264 ; 0000-0001-7693-8896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207543.2021.1887533$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207543.2021.1887533$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Lee, Jun-Ho</creatorcontrib><creatorcontrib>Kim, Hyun-Jung</creatorcontrib><title>Reinforcement learning for robotic flow shop scheduling with processing time variations</title><title>International journal of production research</title><description>We address a robotic flow shop scheduling problem where two part types are processed on each given set of dedicated machines. A single robot moving on a fixed rail transports one part at a time, and the processing times of the parts vary on the machines within a given time interval. We use a reinforcement learning (RL) approach to obtain efficient robot task sequences to minimise makespan. We model the problem with a Petri net used for a RLenvironment and develop a lower bound for the makespan. We then define states, actions, and rewards based on the Petri net model; further, we show that the RL approach works better than the first-in-first-out (FIFO) rule and the reverse sequence (RS), which is extensively used for cyclic scheduling of a robotic flow shop; moreover, the gap between the makespan from the proposed algorithm and a lower bound is not large; finally, the makespan from the RL method is compared to an optimal solution in a relaxed problem. This research shows the applicability of RL for the scheduling of robotic flow shops and its efficiency by comparing it to FIFO, RS and a lower bound. This work can be easily extended to several other variants of robotic flow shop scheduling problems.</description><subject>Algorithms</subject><subject>Job shop scheduling</subject><subject>Lower bounds</subject><subject>Machine shops</subject><subject>Petri net</subject><subject>Petri nets</subject><subject>Processing time variation</subject><subject>reinforcement learning</subject><subject>robotic flow shop</subject><subject>Robotics</subject><subject>Robots</subject><subject>Scheduling</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKc_QQh43ZnTtM3pnTL8goEgit6FLE1cRtvMpHPs39taxTvPTTjhefOGh5BzYDNgyC4ZS5nIMz5LWQozQBQ55wdkArwokhzx7ZBMBiYZoGNyEuOa9ZNjNiGvT8a11gdtGtN2tDYqtK59p_0VDX7pO6eprf2OxpXf0KhXptrWA7Bz3YpugtcmxmHvXGPopwpOdc638ZQcWVVHc_ZzTsnL7c3z_D5ZPN49zK8XieYF75KqtGUKIDIUWBjMWYaw1JBbnmJpUQEzlmNmwVa2KFUOVaqsrZQqSlFkwPiUXIzv9l_52JrYybXfhravlKkQDAEhEz2Vj5QOPsZgrNwE16iwl8Dk4FD-OpSDQ_njsM_RMWe0b138SyEILEsoBuRqRL41NmrnQ13JTu1rH2xQre5j_P-WLzVag34</recordid><startdate>20220403</startdate><enddate>20220403</enddate><creator>Lee, Jun-Ho</creator><creator>Kim, Hyun-Jung</creator><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7190-3264</orcidid><orcidid>https://orcid.org/0000-0001-7693-8896</orcidid></search><sort><creationdate>20220403</creationdate><title>Reinforcement learning for robotic flow shop scheduling with processing time variations</title><author>Lee, Jun-Ho ; Kim, Hyun-Jung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d9f9211748786e850481bc15f3289f8a10ef384f1fdf69a51d2affdaa69764103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Job shop scheduling</topic><topic>Lower bounds</topic><topic>Machine shops</topic><topic>Petri net</topic><topic>Petri nets</topic><topic>Processing time variation</topic><topic>reinforcement learning</topic><topic>robotic flow shop</topic><topic>Robotics</topic><topic>Robots</topic><topic>Scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jun-Ho</creatorcontrib><creatorcontrib>Kim, Hyun-Jung</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jun-Ho</au><au>Kim, Hyun-Jung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcement learning for robotic flow shop scheduling with processing time variations</atitle><jtitle>International journal of production research</jtitle><date>2022-04-03</date><risdate>2022</risdate><volume>60</volume><issue>7</issue><spage>2346</spage><epage>2368</epage><pages>2346-2368</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>We address a robotic flow shop scheduling problem where two part types are processed on each given set of dedicated machines. A single robot moving on a fixed rail transports one part at a time, and the processing times of the parts vary on the machines within a given time interval. We use a reinforcement learning (RL) approach to obtain efficient robot task sequences to minimise makespan. We model the problem with a Petri net used for a RLenvironment and develop a lower bound for the makespan. We then define states, actions, and rewards based on the Petri net model; further, we show that the RL approach works better than the first-in-first-out (FIFO) rule and the reverse sequence (RS), which is extensively used for cyclic scheduling of a robotic flow shop; moreover, the gap between the makespan from the proposed algorithm and a lower bound is not large; finally, the makespan from the RL method is compared to an optimal solution in a relaxed problem. This research shows the applicability of RL for the scheduling of robotic flow shops and its efficiency by comparing it to FIFO, RS and a lower bound. This work can be easily extended to several other variants of robotic flow shop scheduling problems.</abstract><cop>London</cop><pub>Taylor & Francis</pub><doi>10.1080/00207543.2021.1887533</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7190-3264</orcidid><orcidid>https://orcid.org/0000-0001-7693-8896</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7543 |
ispartof | International journal of production research, 2022-04, Vol.60 (7), p.2346-2368 |
issn | 0020-7543 1366-588X |
language | eng |
recordid | cdi_proquest_journals_2770818147 |
source | Taylor & Francis; EBSCOhost Business Source Complete |
subjects | Algorithms Job shop scheduling Lower bounds Machine shops Petri net Petri nets Processing time variation reinforcement learning robotic flow shop Robotics Robots Scheduling |
title | Reinforcement learning for robotic flow shop scheduling with processing time variations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T13%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcement%20learning%20for%20robotic%20flow%20shop%20scheduling%20with%20processing%20time%20variations&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Lee,%20Jun-Ho&rft.date=2022-04-03&rft.volume=60&rft.issue=7&rft.spage=2346&rft.epage=2368&rft.pages=2346-2368&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2021.1887533&rft_dat=%3Cproquest_infor%3E2770818147%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770818147&rft_id=info:pmid/&rfr_iscdi=true |