Reinforcement learning for robotic flow shop scheduling with processing time variations

We address a robotic flow shop scheduling problem where two part types are processed on each given set of dedicated machines. A single robot moving on a fixed rail transports one part at a time, and the processing times of the parts vary on the machines within a given time interval. We use a reinfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2022-04, Vol.60 (7), p.2346-2368
Hauptverfasser: Lee, Jun-Ho, Kim, Hyun-Jung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2368
container_issue 7
container_start_page 2346
container_title International journal of production research
container_volume 60
creator Lee, Jun-Ho
Kim, Hyun-Jung
description We address a robotic flow shop scheduling problem where two part types are processed on each given set of dedicated machines. A single robot moving on a fixed rail transports one part at a time, and the processing times of the parts vary on the machines within a given time interval. We use a reinforcement learning (RL) approach to obtain efficient robot task sequences to minimise makespan. We model the problem with a Petri net used for a RLenvironment and develop a lower bound for the makespan. We then define states, actions, and rewards based on the Petri net model; further, we show that the RL approach works better than the first-in-first-out (FIFO) rule and the reverse sequence (RS), which is extensively used for cyclic scheduling of a robotic flow shop; moreover, the gap between the makespan from the proposed algorithm and a lower bound is not large; finally, the makespan from the RL method is compared to an optimal solution in a relaxed problem. This research shows the applicability of RL for the scheduling of robotic flow shops and its efficiency by comparing it to FIFO, RS and a lower bound. This work can be easily extended to several other variants of robotic flow shop scheduling problems.
doi_str_mv 10.1080/00207543.2021.1887533
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2770818147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770818147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d9f9211748786e850481bc15f3289f8a10ef384f1fdf69a51d2affdaa69764103</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKc_QQh43ZnTtM3pnTL8goEgit6FLE1cRtvMpHPs39taxTvPTTjhefOGh5BzYDNgyC4ZS5nIMz5LWQozQBQ55wdkArwokhzx7ZBMBiYZoGNyEuOa9ZNjNiGvT8a11gdtGtN2tDYqtK59p_0VDX7pO6eprf2OxpXf0KhXptrWA7Bz3YpugtcmxmHvXGPopwpOdc638ZQcWVVHc_ZzTsnL7c3z_D5ZPN49zK8XieYF75KqtGUKIDIUWBjMWYaw1JBbnmJpUQEzlmNmwVa2KFUOVaqsrZQqSlFkwPiUXIzv9l_52JrYybXfhravlKkQDAEhEz2Vj5QOPsZgrNwE16iwl8Dk4FD-OpSDQ_njsM_RMWe0b138SyEILEsoBuRqRL41NmrnQ13JTu1rH2xQre5j_P-WLzVag34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770818147</pqid></control><display><type>article</type><title>Reinforcement learning for robotic flow shop scheduling with processing time variations</title><source>Taylor &amp; Francis</source><source>EBSCOhost Business Source Complete</source><creator>Lee, Jun-Ho ; Kim, Hyun-Jung</creator><creatorcontrib>Lee, Jun-Ho ; Kim, Hyun-Jung</creatorcontrib><description>We address a robotic flow shop scheduling problem where two part types are processed on each given set of dedicated machines. A single robot moving on a fixed rail transports one part at a time, and the processing times of the parts vary on the machines within a given time interval. We use a reinforcement learning (RL) approach to obtain efficient robot task sequences to minimise makespan. We model the problem with a Petri net used for a RLenvironment and develop a lower bound for the makespan. We then define states, actions, and rewards based on the Petri net model; further, we show that the RL approach works better than the first-in-first-out (FIFO) rule and the reverse sequence (RS), which is extensively used for cyclic scheduling of a robotic flow shop; moreover, the gap between the makespan from the proposed algorithm and a lower bound is not large; finally, the makespan from the RL method is compared to an optimal solution in a relaxed problem. This research shows the applicability of RL for the scheduling of robotic flow shops and its efficiency by comparing it to FIFO, RS and a lower bound. This work can be easily extended to several other variants of robotic flow shop scheduling problems.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2021.1887533</identifier><language>eng</language><publisher>London: Taylor &amp; Francis</publisher><subject>Algorithms ; Job shop scheduling ; Lower bounds ; Machine shops ; Petri net ; Petri nets ; Processing time variation ; reinforcement learning ; robotic flow shop ; Robotics ; Robots ; Scheduling</subject><ispartof>International journal of production research, 2022-04, Vol.60 (7), p.2346-2368</ispartof><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d9f9211748786e850481bc15f3289f8a10ef384f1fdf69a51d2affdaa69764103</citedby><cites>FETCH-LOGICAL-c363t-d9f9211748786e850481bc15f3289f8a10ef384f1fdf69a51d2affdaa69764103</cites><orcidid>0000-0001-7190-3264 ; 0000-0001-7693-8896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207543.2021.1887533$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207543.2021.1887533$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Lee, Jun-Ho</creatorcontrib><creatorcontrib>Kim, Hyun-Jung</creatorcontrib><title>Reinforcement learning for robotic flow shop scheduling with processing time variations</title><title>International journal of production research</title><description>We address a robotic flow shop scheduling problem where two part types are processed on each given set of dedicated machines. A single robot moving on a fixed rail transports one part at a time, and the processing times of the parts vary on the machines within a given time interval. We use a reinforcement learning (RL) approach to obtain efficient robot task sequences to minimise makespan. We model the problem with a Petri net used for a RLenvironment and develop a lower bound for the makespan. We then define states, actions, and rewards based on the Petri net model; further, we show that the RL approach works better than the first-in-first-out (FIFO) rule and the reverse sequence (RS), which is extensively used for cyclic scheduling of a robotic flow shop; moreover, the gap between the makespan from the proposed algorithm and a lower bound is not large; finally, the makespan from the RL method is compared to an optimal solution in a relaxed problem. This research shows the applicability of RL for the scheduling of robotic flow shops and its efficiency by comparing it to FIFO, RS and a lower bound. This work can be easily extended to several other variants of robotic flow shop scheduling problems.</description><subject>Algorithms</subject><subject>Job shop scheduling</subject><subject>Lower bounds</subject><subject>Machine shops</subject><subject>Petri net</subject><subject>Petri nets</subject><subject>Processing time variation</subject><subject>reinforcement learning</subject><subject>robotic flow shop</subject><subject>Robotics</subject><subject>Robots</subject><subject>Scheduling</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKc_QQh43ZnTtM3pnTL8goEgit6FLE1cRtvMpHPs39taxTvPTTjhefOGh5BzYDNgyC4ZS5nIMz5LWQozQBQ55wdkArwokhzx7ZBMBiYZoGNyEuOa9ZNjNiGvT8a11gdtGtN2tDYqtK59p_0VDX7pO6eprf2OxpXf0KhXptrWA7Bz3YpugtcmxmHvXGPopwpOdc638ZQcWVVHc_ZzTsnL7c3z_D5ZPN49zK8XieYF75KqtGUKIDIUWBjMWYaw1JBbnmJpUQEzlmNmwVa2KFUOVaqsrZQqSlFkwPiUXIzv9l_52JrYybXfhravlKkQDAEhEz2Vj5QOPsZgrNwE16iwl8Dk4FD-OpSDQ_njsM_RMWe0b138SyEILEsoBuRqRL41NmrnQ13JTu1rH2xQre5j_P-WLzVag34</recordid><startdate>20220403</startdate><enddate>20220403</enddate><creator>Lee, Jun-Ho</creator><creator>Kim, Hyun-Jung</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7190-3264</orcidid><orcidid>https://orcid.org/0000-0001-7693-8896</orcidid></search><sort><creationdate>20220403</creationdate><title>Reinforcement learning for robotic flow shop scheduling with processing time variations</title><author>Lee, Jun-Ho ; Kim, Hyun-Jung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d9f9211748786e850481bc15f3289f8a10ef384f1fdf69a51d2affdaa69764103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Job shop scheduling</topic><topic>Lower bounds</topic><topic>Machine shops</topic><topic>Petri net</topic><topic>Petri nets</topic><topic>Processing time variation</topic><topic>reinforcement learning</topic><topic>robotic flow shop</topic><topic>Robotics</topic><topic>Robots</topic><topic>Scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jun-Ho</creatorcontrib><creatorcontrib>Kim, Hyun-Jung</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jun-Ho</au><au>Kim, Hyun-Jung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcement learning for robotic flow shop scheduling with processing time variations</atitle><jtitle>International journal of production research</jtitle><date>2022-04-03</date><risdate>2022</risdate><volume>60</volume><issue>7</issue><spage>2346</spage><epage>2368</epage><pages>2346-2368</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>We address a robotic flow shop scheduling problem where two part types are processed on each given set of dedicated machines. A single robot moving on a fixed rail transports one part at a time, and the processing times of the parts vary on the machines within a given time interval. We use a reinforcement learning (RL) approach to obtain efficient robot task sequences to minimise makespan. We model the problem with a Petri net used for a RLenvironment and develop a lower bound for the makespan. We then define states, actions, and rewards based on the Petri net model; further, we show that the RL approach works better than the first-in-first-out (FIFO) rule and the reverse sequence (RS), which is extensively used for cyclic scheduling of a robotic flow shop; moreover, the gap between the makespan from the proposed algorithm and a lower bound is not large; finally, the makespan from the RL method is compared to an optimal solution in a relaxed problem. This research shows the applicability of RL for the scheduling of robotic flow shops and its efficiency by comparing it to FIFO, RS and a lower bound. This work can be easily extended to several other variants of robotic flow shop scheduling problems.</abstract><cop>London</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00207543.2021.1887533</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7190-3264</orcidid><orcidid>https://orcid.org/0000-0001-7693-8896</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7543
ispartof International journal of production research, 2022-04, Vol.60 (7), p.2346-2368
issn 0020-7543
1366-588X
language eng
recordid cdi_proquest_journals_2770818147
source Taylor & Francis; EBSCOhost Business Source Complete
subjects Algorithms
Job shop scheduling
Lower bounds
Machine shops
Petri net
Petri nets
Processing time variation
reinforcement learning
robotic flow shop
Robotics
Robots
Scheduling
title Reinforcement learning for robotic flow shop scheduling with processing time variations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T13%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcement%20learning%20for%20robotic%20flow%20shop%20scheduling%20with%20processing%20time%20variations&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Lee,%20Jun-Ho&rft.date=2022-04-03&rft.volume=60&rft.issue=7&rft.spage=2346&rft.epage=2368&rft.pages=2346-2368&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2021.1887533&rft_dat=%3Cproquest_infor%3E2770818147%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770818147&rft_id=info:pmid/&rfr_iscdi=true