Sampling Algorithms for Discrete Markov Random Fields and Related Graphical Models
Discrete Markov random fields are undirected graphical models in which the nodes of a graph are discrete random variables with values usually represented by colors. Typically, graphs are taken to be square lattices, although more general graphs are also of interest. Such discrete MRFs have been stud...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2021-10, Vol.116 (536), p.2065-2086 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2086 |
---|---|
container_issue | 536 |
container_start_page | 2065 |
container_title | Journal of the American Statistical Association |
container_volume | 116 |
creator | Izenman, Alan Julian |
description | Discrete Markov random fields are undirected graphical models in which the nodes of a graph are discrete random variables with values usually represented by colors. Typically, graphs are taken to be square lattices, although more general graphs are also of interest. Such discrete MRFs have been studied in many disciplines. We describe the two most popular types of discrete MRFs, namely the two-state Ising model and the q-state Potts model, and variations such as the cellular automaton, the cellular Potts model, and the random cluster model, the latter of which is a continuous generalization of both the Ising and Potts models. Research interest is usually focused on providing algorithms for simulating from these models because the partition function is so computationally intractable that statistical inference for the parameters of the appropriate probability distribution becomes very complicated. Substantial improvements to the Metropolis algorithm have appeared in the form of cluster algorithms, such as the Swendsen-Wang and Wolff algorithms. We study the simulation processes of these algorithms, which update the color of a cluster of nodes at each iteration. |
doi_str_mv | 10.1080/01621459.2021.1898410 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2770816872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770816872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-8eac63be5586db18883c0af7789cb63f95decd25bb15ae33c574412a0ad7855a3</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOKePIAS87kyapsnuHNNNYSJMBe_CaZJunWkzk07Z29uyeeu5ORz4_v_Ah9A1JSNKJLklNE9pxsejlKR0ROVYZpScoAHlTCSpyD5O0aBnkh46Rxcxbkg3QsoBWr5CvXVVs8ITt_Khatd1xKUP-L6KOtjW4mcIn_4bL6ExvsazyjoTcXfgpXXQWoPnAbbrSoPDz95YFy_RWQku2qvjHqL32cPb9DFZvMyfppNFopmgbSIt6JwVlnOZm4JKKZkmUAohx7rIWTnmxmqT8qKgHCxjmossoykQMEJyDmyIbg692-C_dja2auN3oeleqlQIImkuRdpR_EDp4GMMtlTbUNUQ9ooS1etTf_pUr08d9XW5u0OuajodNfz44IxqYe98KAM0uoqK_V_xC-OOdmo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770816872</pqid></control><display><type>article</type><title>Sampling Algorithms for Discrete Markov Random Fields and Related Graphical Models</title><source>Taylor & Francis:Master (3349 titles)</source><creator>Izenman, Alan Julian</creator><creatorcontrib>Izenman, Alan Julian</creatorcontrib><description>Discrete Markov random fields are undirected graphical models in which the nodes of a graph are discrete random variables with values usually represented by colors. Typically, graphs are taken to be square lattices, although more general graphs are also of interest. Such discrete MRFs have been studied in many disciplines. We describe the two most popular types of discrete MRFs, namely the two-state Ising model and the q-state Potts model, and variations such as the cellular automaton, the cellular Potts model, and the random cluster model, the latter of which is a continuous generalization of both the Ising and Potts models. Research interest is usually focused on providing algorithms for simulating from these models because the partition function is so computationally intractable that statistical inference for the parameters of the appropriate probability distribution becomes very complicated. Substantial improvements to the Metropolis algorithm have appeared in the form of cluster algorithms, such as the Swendsen-Wang and Wolff algorithms. We study the simulation processes of these algorithms, which update the color of a cluster of nodes at each iteration.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2021.1898410</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Algorithms ; Cellular automata ; Cellular Potts model ; Clusters ; Fields (mathematics) ; Graphical models ; Graphical representations ; Graphs ; Ising model ; Iterative methods ; Lattices ; Metropolis algorithm ; Nodes ; Partition ; Partitions (mathematics) ; Potts model ; Random variables ; Regression analysis ; Simulation ; Statistical analysis ; Statistical inference ; Statistical methods ; Statistics ; Swendsen-Wang algorithm ; Wolff algorithm</subject><ispartof>Journal of the American Statistical Association, 2021-10, Vol.116 (536), p.2065-2086</ispartof><rights>2021 American Statistical Association 2021</rights><rights>2021 American Statistical Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-8eac63be5586db18883c0af7789cb63f95decd25bb15ae33c574412a0ad7855a3</citedby><cites>FETCH-LOGICAL-c371t-8eac63be5586db18883c0af7789cb63f95decd25bb15ae33c574412a0ad7855a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01621459.2021.1898410$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01621459.2021.1898410$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Izenman, Alan Julian</creatorcontrib><title>Sampling Algorithms for Discrete Markov Random Fields and Related Graphical Models</title><title>Journal of the American Statistical Association</title><description>Discrete Markov random fields are undirected graphical models in which the nodes of a graph are discrete random variables with values usually represented by colors. Typically, graphs are taken to be square lattices, although more general graphs are also of interest. Such discrete MRFs have been studied in many disciplines. We describe the two most popular types of discrete MRFs, namely the two-state Ising model and the q-state Potts model, and variations such as the cellular automaton, the cellular Potts model, and the random cluster model, the latter of which is a continuous generalization of both the Ising and Potts models. Research interest is usually focused on providing algorithms for simulating from these models because the partition function is so computationally intractable that statistical inference for the parameters of the appropriate probability distribution becomes very complicated. Substantial improvements to the Metropolis algorithm have appeared in the form of cluster algorithms, such as the Swendsen-Wang and Wolff algorithms. We study the simulation processes of these algorithms, which update the color of a cluster of nodes at each iteration.</description><subject>Algorithms</subject><subject>Cellular automata</subject><subject>Cellular Potts model</subject><subject>Clusters</subject><subject>Fields (mathematics)</subject><subject>Graphical models</subject><subject>Graphical representations</subject><subject>Graphs</subject><subject>Ising model</subject><subject>Iterative methods</subject><subject>Lattices</subject><subject>Metropolis algorithm</subject><subject>Nodes</subject><subject>Partition</subject><subject>Partitions (mathematics)</subject><subject>Potts model</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Swendsen-Wang algorithm</subject><subject>Wolff algorithm</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kNFKwzAUhoMoOKePIAS87kyapsnuHNNNYSJMBe_CaZJunWkzk07Z29uyeeu5ORz4_v_Ah9A1JSNKJLklNE9pxsejlKR0ROVYZpScoAHlTCSpyD5O0aBnkh46Rxcxbkg3QsoBWr5CvXVVs8ITt_Khatd1xKUP-L6KOtjW4mcIn_4bL6ExvsazyjoTcXfgpXXQWoPnAbbrSoPDz95YFy_RWQku2qvjHqL32cPb9DFZvMyfppNFopmgbSIt6JwVlnOZm4JKKZkmUAohx7rIWTnmxmqT8qKgHCxjmossoykQMEJyDmyIbg692-C_dja2auN3oeleqlQIImkuRdpR_EDp4GMMtlTbUNUQ9ooS1etTf_pUr08d9XW5u0OuajodNfz44IxqYe98KAM0uoqK_V_xC-OOdmo</recordid><startdate>20211002</startdate><enddate>20211002</enddate><creator>Izenman, Alan Julian</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20211002</creationdate><title>Sampling Algorithms for Discrete Markov Random Fields and Related Graphical Models</title><author>Izenman, Alan Julian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-8eac63be5586db18883c0af7789cb63f95decd25bb15ae33c574412a0ad7855a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cellular automata</topic><topic>Cellular Potts model</topic><topic>Clusters</topic><topic>Fields (mathematics)</topic><topic>Graphical models</topic><topic>Graphical representations</topic><topic>Graphs</topic><topic>Ising model</topic><topic>Iterative methods</topic><topic>Lattices</topic><topic>Metropolis algorithm</topic><topic>Nodes</topic><topic>Partition</topic><topic>Partitions (mathematics)</topic><topic>Potts model</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Swendsen-Wang algorithm</topic><topic>Wolff algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izenman, Alan Julian</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izenman, Alan Julian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sampling Algorithms for Discrete Markov Random Fields and Related Graphical Models</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2021-10-02</date><risdate>2021</risdate><volume>116</volume><issue>536</issue><spage>2065</spage><epage>2086</epage><pages>2065-2086</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>Discrete Markov random fields are undirected graphical models in which the nodes of a graph are discrete random variables with values usually represented by colors. Typically, graphs are taken to be square lattices, although more general graphs are also of interest. Such discrete MRFs have been studied in many disciplines. We describe the two most popular types of discrete MRFs, namely the two-state Ising model and the q-state Potts model, and variations such as the cellular automaton, the cellular Potts model, and the random cluster model, the latter of which is a continuous generalization of both the Ising and Potts models. Research interest is usually focused on providing algorithms for simulating from these models because the partition function is so computationally intractable that statistical inference for the parameters of the appropriate probability distribution becomes very complicated. Substantial improvements to the Metropolis algorithm have appeared in the form of cluster algorithms, such as the Swendsen-Wang and Wolff algorithms. We study the simulation processes of these algorithms, which update the color of a cluster of nodes at each iteration.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1080/01621459.2021.1898410</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 2021-10, Vol.116 (536), p.2065-2086 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_proquest_journals_2770816872 |
source | Taylor & Francis:Master (3349 titles) |
subjects | Algorithms Cellular automata Cellular Potts model Clusters Fields (mathematics) Graphical models Graphical representations Graphs Ising model Iterative methods Lattices Metropolis algorithm Nodes Partition Partitions (mathematics) Potts model Random variables Regression analysis Simulation Statistical analysis Statistical inference Statistical methods Statistics Swendsen-Wang algorithm Wolff algorithm |
title | Sampling Algorithms for Discrete Markov Random Fields and Related Graphical Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sampling%20Algorithms%20for%20Discrete%20Markov%20Random%20Fields%20and%20Related%20Graphical%20Models&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Izenman,%20Alan%20Julian&rft.date=2021-10-02&rft.volume=116&rft.issue=536&rft.spage=2065&rft.epage=2086&rft.pages=2065-2086&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2021.1898410&rft_dat=%3Cproquest_infor%3E2770816872%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770816872&rft_id=info:pmid/&rfr_iscdi=true |