A Bayesian Hierarchical CACE Model Accounting for Incomplete Noncompliance With Application to a Meta-analysis of Epidural Analgesia on Cesarean Section

Noncompliance with assigned treatments is a common challenge in analyzing and interpreting randomized clinical trials (RCTs). One way to handle noncompliance is to estimate the complier-average causal effect (CACE), the intervention's efficacy in the subpopulation that complies with assigned tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2021, Vol.116 (536), p.1700-1712
Hauptverfasser: Zhou, Jincheng, Hodges, James S., Chu, Haitao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1712
container_issue 536
container_start_page 1700
container_title Journal of the American Statistical Association
container_volume 116
creator Zhou, Jincheng
Hodges, James S.
Chu, Haitao
description Noncompliance with assigned treatments is a common challenge in analyzing and interpreting randomized clinical trials (RCTs). One way to handle noncompliance is to estimate the complier-average causal effect (CACE), the intervention's efficacy in the subpopulation that complies with assigned treatment. In a two-step meta-analysis, one could first estimate CACE for each study, then combine them to estimate the population-averaged CACE. However, when some trials do not report noncompliance data, the two-step meta-analysis can be less efficient and potentially biased by excluding these trials. This article proposes a flexible Bayesian hierarchical CACE framework to simultaneously account for heterogeneous and incomplete noncompliance data in a meta-analysis of RCTs. The models are motivated by and used for a meta-analysis estimating the CACE of epidural analgesia on cesarean section, in which only 10 of 27 trials reported complete noncompliance data. The new analysis includes all 27 studies and the results present new insights on the causal effect after accounting for noncompliance. Compared to the estimated risk difference of 0.8% (95% CI: -0.3%, 1.9%) given by the two-step intention-to-treat meta-analysis, the estimated CACE is 4.1% (95% CrI: -0.3%, 10.5%). We also report simulation studies to evaluate the performance of the proposed method. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
doi_str_mv 10.1080/01621459.2021.1900859
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2770816621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770816621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-c2f4cc92144d27a61f1acb36910e59a2666eabbe423a221cd8e0e4ee1a372f923</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi0EotuFRwBZ4sIli-0kTnJBhGihlVo4AIKbNetMdl1l7dROQPsmfVwc7bYCDvgy_vP7ZsbzEfKCsxVnJXvDuBQ8y6uVYIKveMVYmVePyILnaZGIIvvxmCxmJpmhM3Iewg2LqyjLp-QszYXkGS8W5K6m7-GAwYClFwY9eL0zGnra1M2aXrsWe1pr7SY7GrulnfP00mq3H3ockX5yx31Ua6Tfzbij9RCPGkbjLB0dBXqNIyRgoT8EE6jr6How7eRjiTpebufSNLINBvAYu_iCehY_I0866AM-P8Ul-fZh_bW5SK4-f7xs6qtE56IaEy26TOsqjiJrRQGSdxz0JpUVZ5hXIKSUCJsNZiIFIbhuS2SYIXJIC9FVIl2St8e8w7TZY6vRjrE3NXizB39QDoz6-8Wandq6n6qsGOciiwlenxJ4dzthGNXeBI19DxbdFJSQaZGXmYxxSV79g964yccpRKooWMll9DRS-ZHS3oXgsXtohjM1e6_uvVez9-rkfdS9_PMnD6p7syPw7ggYG33cwy_n-1aNcOid73y00ASV_r_Gb-P3v_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770816621</pqid></control><display><type>article</type><title>A Bayesian Hierarchical CACE Model Accounting for Incomplete Noncompliance With Application to a Meta-analysis of Epidural Analgesia on Cesarean Section</title><source>Taylor &amp; Francis</source><creator>Zhou, Jincheng ; Hodges, James S. ; Chu, Haitao</creator><creatorcontrib>Zhou, Jincheng ; Hodges, James S. ; Chu, Haitao</creatorcontrib><description>Noncompliance with assigned treatments is a common challenge in analyzing and interpreting randomized clinical trials (RCTs). One way to handle noncompliance is to estimate the complier-average causal effect (CACE), the intervention's efficacy in the subpopulation that complies with assigned treatment. In a two-step meta-analysis, one could first estimate CACE for each study, then combine them to estimate the population-averaged CACE. However, when some trials do not report noncompliance data, the two-step meta-analysis can be less efficient and potentially biased by excluding these trials. This article proposes a flexible Bayesian hierarchical CACE framework to simultaneously account for heterogeneous and incomplete noncompliance data in a meta-analysis of RCTs. The models are motivated by and used for a meta-analysis estimating the CACE of epidural analgesia on cesarean section, in which only 10 of 27 trials reported complete noncompliance data. The new analysis includes all 27 studies and the results present new insights on the causal effect after accounting for noncompliance. Compared to the estimated risk difference of 0.8% (95% CI: -0.3%, 1.9%) given by the two-step intention-to-treat meta-analysis, the estimated CACE is 4.1% (95% CrI: -0.3%, 10.5%). We also report simulation studies to evaluate the performance of the proposed method. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2021.1900859</identifier><identifier>PMID: 35261417</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Analgesia ; Analysis ; Bayesian analysis ; Bayesian methods ; Causal effect ; Cesarean section ; Clinical research ; Clinical trials ; Data analysis ; Efficacy ; Epidural ; Meta-analysis ; Missing data ; Noncompliance ; Randomized trial ; Regression analysis ; Simulation ; Statistical methods ; Statistics</subject><ispartof>Journal of the American Statistical Association, 2021, Vol.116 (536), p.1700-1712</ispartof><rights>2021 American Statistical Association 2021</rights><rights>2021 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-c2f4cc92144d27a61f1acb36910e59a2666eabbe423a221cd8e0e4ee1a372f923</citedby><cites>FETCH-LOGICAL-c529t-c2f4cc92144d27a61f1acb36910e59a2666eabbe423a221cd8e0e4ee1a372f923</cites><orcidid>0000-0003-2641-2495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01621459.2021.1900859$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01621459.2021.1900859$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35261417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Jincheng</creatorcontrib><creatorcontrib>Hodges, James S.</creatorcontrib><creatorcontrib>Chu, Haitao</creatorcontrib><title>A Bayesian Hierarchical CACE Model Accounting for Incomplete Noncompliance With Application to a Meta-analysis of Epidural Analgesia on Cesarean Section</title><title>Journal of the American Statistical Association</title><addtitle>J Am Stat Assoc</addtitle><description>Noncompliance with assigned treatments is a common challenge in analyzing and interpreting randomized clinical trials (RCTs). One way to handle noncompliance is to estimate the complier-average causal effect (CACE), the intervention's efficacy in the subpopulation that complies with assigned treatment. In a two-step meta-analysis, one could first estimate CACE for each study, then combine them to estimate the population-averaged CACE. However, when some trials do not report noncompliance data, the two-step meta-analysis can be less efficient and potentially biased by excluding these trials. This article proposes a flexible Bayesian hierarchical CACE framework to simultaneously account for heterogeneous and incomplete noncompliance data in a meta-analysis of RCTs. The models are motivated by and used for a meta-analysis estimating the CACE of epidural analgesia on cesarean section, in which only 10 of 27 trials reported complete noncompliance data. The new analysis includes all 27 studies and the results present new insights on the causal effect after accounting for noncompliance. Compared to the estimated risk difference of 0.8% (95% CI: -0.3%, 1.9%) given by the two-step intention-to-treat meta-analysis, the estimated CACE is 4.1% (95% CrI: -0.3%, 10.5%). We also report simulation studies to evaluate the performance of the proposed method. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.</description><subject>Analgesia</subject><subject>Analysis</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Causal effect</subject><subject>Cesarean section</subject><subject>Clinical research</subject><subject>Clinical trials</subject><subject>Data analysis</subject><subject>Efficacy</subject><subject>Epidural</subject><subject>Meta-analysis</subject><subject>Missing data</subject><subject>Noncompliance</subject><subject>Randomized trial</subject><subject>Regression analysis</subject><subject>Simulation</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQxi0EotuFRwBZ4sIli-0kTnJBhGihlVo4AIKbNetMdl1l7dROQPsmfVwc7bYCDvgy_vP7ZsbzEfKCsxVnJXvDuBQ8y6uVYIKveMVYmVePyILnaZGIIvvxmCxmJpmhM3Iewg2LqyjLp-QszYXkGS8W5K6m7-GAwYClFwY9eL0zGnra1M2aXrsWe1pr7SY7GrulnfP00mq3H3ockX5yx31Ua6Tfzbij9RCPGkbjLB0dBXqNIyRgoT8EE6jr6How7eRjiTpebufSNLINBvAYu_iCehY_I0866AM-P8Ul-fZh_bW5SK4-f7xs6qtE56IaEy26TOsqjiJrRQGSdxz0JpUVZ5hXIKSUCJsNZiIFIbhuS2SYIXJIC9FVIl2St8e8w7TZY6vRjrE3NXizB39QDoz6-8Wandq6n6qsGOciiwlenxJ4dzthGNXeBI19DxbdFJSQaZGXmYxxSV79g964yccpRKooWMll9DRS-ZHS3oXgsXtohjM1e6_uvVez9-rkfdS9_PMnD6p7syPw7ggYG33cwy_n-1aNcOid73y00ASV_r_Gb-P3v_w</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhou, Jincheng</creator><creator>Hodges, James S.</creator><creator>Chu, Haitao</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2641-2495</orcidid></search><sort><creationdate>2021</creationdate><title>A Bayesian Hierarchical CACE Model Accounting for Incomplete Noncompliance With Application to a Meta-analysis of Epidural Analgesia on Cesarean Section</title><author>Zhou, Jincheng ; Hodges, James S. ; Chu, Haitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-c2f4cc92144d27a61f1acb36910e59a2666eabbe423a221cd8e0e4ee1a372f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analgesia</topic><topic>Analysis</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Causal effect</topic><topic>Cesarean section</topic><topic>Clinical research</topic><topic>Clinical trials</topic><topic>Data analysis</topic><topic>Efficacy</topic><topic>Epidural</topic><topic>Meta-analysis</topic><topic>Missing data</topic><topic>Noncompliance</topic><topic>Randomized trial</topic><topic>Regression analysis</topic><topic>Simulation</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jincheng</creatorcontrib><creatorcontrib>Hodges, James S.</creatorcontrib><creatorcontrib>Chu, Haitao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jincheng</au><au>Hodges, James S.</au><au>Chu, Haitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian Hierarchical CACE Model Accounting for Incomplete Noncompliance With Application to a Meta-analysis of Epidural Analgesia on Cesarean Section</atitle><jtitle>Journal of the American Statistical Association</jtitle><addtitle>J Am Stat Assoc</addtitle><date>2021</date><risdate>2021</risdate><volume>116</volume><issue>536</issue><spage>1700</spage><epage>1712</epage><pages>1700-1712</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>Noncompliance with assigned treatments is a common challenge in analyzing and interpreting randomized clinical trials (RCTs). One way to handle noncompliance is to estimate the complier-average causal effect (CACE), the intervention's efficacy in the subpopulation that complies with assigned treatment. In a two-step meta-analysis, one could first estimate CACE for each study, then combine them to estimate the population-averaged CACE. However, when some trials do not report noncompliance data, the two-step meta-analysis can be less efficient and potentially biased by excluding these trials. This article proposes a flexible Bayesian hierarchical CACE framework to simultaneously account for heterogeneous and incomplete noncompliance data in a meta-analysis of RCTs. The models are motivated by and used for a meta-analysis estimating the CACE of epidural analgesia on cesarean section, in which only 10 of 27 trials reported complete noncompliance data. The new analysis includes all 27 studies and the results present new insights on the causal effect after accounting for noncompliance. Compared to the estimated risk difference of 0.8% (95% CI: -0.3%, 1.9%) given by the two-step intention-to-treat meta-analysis, the estimated CACE is 4.1% (95% CrI: -0.3%, 10.5%). We also report simulation studies to evaluate the performance of the proposed method. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>35261417</pmid><doi>10.1080/01621459.2021.1900859</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2641-2495</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2021, Vol.116 (536), p.1700-1712
issn 0162-1459
1537-274X
language eng
recordid cdi_proquest_journals_2770816621
source Taylor & Francis
subjects Analgesia
Analysis
Bayesian analysis
Bayesian methods
Causal effect
Cesarean section
Clinical research
Clinical trials
Data analysis
Efficacy
Epidural
Meta-analysis
Missing data
Noncompliance
Randomized trial
Regression analysis
Simulation
Statistical methods
Statistics
title A Bayesian Hierarchical CACE Model Accounting for Incomplete Noncompliance With Application to a Meta-analysis of Epidural Analgesia on Cesarean Section
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A07%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20Hierarchical%20CACE%20Model%20Accounting%20for%20Incomplete%20Noncompliance%20With%20Application%20to%20a%20Meta-analysis%20of%20Epidural%20Analgesia%20on%20Cesarean%20Section&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Zhou,%20Jincheng&rft.date=2021&rft.volume=116&rft.issue=536&rft.spage=1700&rft.epage=1712&rft.pages=1700-1712&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2021.1900859&rft_dat=%3Cproquest_cross%3E2770816621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770816621&rft_id=info:pmid/35261417&rfr_iscdi=true