Robust Automatic Modulation Classification in Low Signal to Noise Ratio
In a non-cooperative communication environment, automatic modulation classification (AMC) is an essential technology for analyzing signals and classifying different kinds of signal modulation before they are demodulated. Deep learning (DL)-based AMC has been proposed as an efficient method of achiev...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023, Vol.11, p.7860-7872 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7872 |
---|---|
container_issue | |
container_start_page | 7860 |
container_title | IEEE access |
container_volume | 11 |
creator | An, To Truong Lee, Byung Moo |
description | In a non-cooperative communication environment, automatic modulation classification (AMC) is an essential technology for analyzing signals and classifying different kinds of signal modulation before they are demodulated. Deep learning (DL)-based AMC has been proposed as an efficient method of achieving high classification performance. However, most current DL-AMC methods have limited generalization capabilities under varying noise conditions, especially at low signal-to-noise ratios (SNRs). Therefore, these methods can not be directly applied to practical systems. In this paper, we propose a threshold autoencoder denoiser convolutional neural network (TADCNN), which consists of a threshold autoencoder denoiser (TAD) and a convolutional neural network (CNN). TADs reduce noise power and clean input signals, which are then passed on to CNN for classification. The TAD network generally consists of three components: the batch normalization layer, the autoencoder, and the threshold denoise. The threshold denoise component uses an auto-learning threshold sub-network to compute thresholds automatically. According to experiments, AMC with TAD improved classification accuracy by 70% at low SNR compared with a model without a denoiser. Additionally, our model achieves an average accuracy of 66.64% on the RML2016.10A dataset, which is 6% to 18% higher than the current AMC model. |
doi_str_mv | 10.1109/ACCESS.2023.3238995 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2770782009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10024264</ieee_id><doaj_id>oai_doaj_org_article_ff57e4d7de894acc84ed551ca660dc9f</doaj_id><sourcerecordid>2770782009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-5a7b957b36ae95f1600274f550287e707f5265db1ada785cefb453cb6f0565b93</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaLgmPsF-hDweTNNmqR5HGXOwVTY9Dmk-RgZ3TKTFvHfm9ohuy-5ObnnnFxOlt3ncJbnkD_Nq2qx3c4QRHiGES45J1fZCOWUTzHB9Pqiv80mMe5hqjJBhI2y5cbXXWzBvGv9QbZOgVevuyZ1_giqRsborFPD1R3B2n-DrdsdZQNaD968iwZs-te77MbKJprJ-Rxnn8-Lj-plun5frqr5eqow5u2USFYn3xpTaTixOYUQscISAlHJDIPMEkSJrnOpJSuJMrYuCFY1tZBQUnM8zlaDrvZyL07BHWT4EV468Qf4sBMypDUaI6wlzBSaaVPyQipVFkYTkitJKdSK26T1OGidgv_qTGzF3nch7RYFYukvJYKwd8TDlAo-xmDsv2sORR-AGAIQfQDiHEBiPQwsZ4y5YEBUIFrgX29RgQM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770782009</pqid></control><display><type>article</type><title>Robust Automatic Modulation Classification in Low Signal to Noise Ratio</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>An, To Truong ; Lee, Byung Moo</creator><creatorcontrib>An, To Truong ; Lee, Byung Moo</creatorcontrib><description>In a non-cooperative communication environment, automatic modulation classification (AMC) is an essential technology for analyzing signals and classifying different kinds of signal modulation before they are demodulated. Deep learning (DL)-based AMC has been proposed as an efficient method of achieving high classification performance. However, most current DL-AMC methods have limited generalization capabilities under varying noise conditions, especially at low signal-to-noise ratios (SNRs). Therefore, these methods can not be directly applied to practical systems. In this paper, we propose a threshold autoencoder denoiser convolutional neural network (TADCNN), which consists of a threshold autoencoder denoiser (TAD) and a convolutional neural network (CNN). TADs reduce noise power and clean input signals, which are then passed on to CNN for classification. The TAD network generally consists of three components: the batch normalization layer, the autoencoder, and the threshold denoise. The threshold denoise component uses an auto-learning threshold sub-network to compute thresholds automatically. According to experiments, AMC with TAD improved classification accuracy by 70% at low SNR compared with a model without a denoiser. Additionally, our model achieves an average accuracy of 66.64% on the RML2016.10A dataset, which is 6% to 18% higher than the current AMC model.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3238995</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; autoencoder denoiser ; Automatic modulation classification ; Classification ; Classification algorithms ; Computer networks ; convolutional neural network ; Convolutional neural networks ; Deep learning ; denoise signal ; Feature extraction ; Machine learning ; Modulation ; Neural networks ; Noise reduction ; Signal classification ; Signal processing algorithms ; Signal to noise ratio ; Technology assessment</subject><ispartof>IEEE access, 2023, Vol.11, p.7860-7872</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-5a7b957b36ae95f1600274f550287e707f5265db1ada785cefb453cb6f0565b93</citedby><cites>FETCH-LOGICAL-c339t-5a7b957b36ae95f1600274f550287e707f5265db1ada785cefb453cb6f0565b93</cites><orcidid>0000-0002-9394-3387 ; 0000-0003-3675-929X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10024264$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>An, To Truong</creatorcontrib><creatorcontrib>Lee, Byung Moo</creatorcontrib><title>Robust Automatic Modulation Classification in Low Signal to Noise Ratio</title><title>IEEE access</title><addtitle>Access</addtitle><description>In a non-cooperative communication environment, automatic modulation classification (AMC) is an essential technology for analyzing signals and classifying different kinds of signal modulation before they are demodulated. Deep learning (DL)-based AMC has been proposed as an efficient method of achieving high classification performance. However, most current DL-AMC methods have limited generalization capabilities under varying noise conditions, especially at low signal-to-noise ratios (SNRs). Therefore, these methods can not be directly applied to practical systems. In this paper, we propose a threshold autoencoder denoiser convolutional neural network (TADCNN), which consists of a threshold autoencoder denoiser (TAD) and a convolutional neural network (CNN). TADs reduce noise power and clean input signals, which are then passed on to CNN for classification. The TAD network generally consists of three components: the batch normalization layer, the autoencoder, and the threshold denoise. The threshold denoise component uses an auto-learning threshold sub-network to compute thresholds automatically. According to experiments, AMC with TAD improved classification accuracy by 70% at low SNR compared with a model without a denoiser. Additionally, our model achieves an average accuracy of 66.64% on the RML2016.10A dataset, which is 6% to 18% higher than the current AMC model.</description><subject>Artificial neural networks</subject><subject>autoencoder denoiser</subject><subject>Automatic modulation classification</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Computer networks</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>denoise signal</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Modulation</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Signal classification</subject><subject>Signal processing algorithms</subject><subject>Signal to noise ratio</subject><subject>Technology assessment</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaLgmPsF-hDweTNNmqR5HGXOwVTY9Dmk-RgZ3TKTFvHfm9ohuy-5ObnnnFxOlt3ncJbnkD_Nq2qx3c4QRHiGES45J1fZCOWUTzHB9Pqiv80mMe5hqjJBhI2y5cbXXWzBvGv9QbZOgVevuyZ1_giqRsborFPD1R3B2n-DrdsdZQNaD968iwZs-te77MbKJprJ-Rxnn8-Lj-plun5frqr5eqow5u2USFYn3xpTaTixOYUQscISAlHJDIPMEkSJrnOpJSuJMrYuCFY1tZBQUnM8zlaDrvZyL07BHWT4EV468Qf4sBMypDUaI6wlzBSaaVPyQipVFkYTkitJKdSK26T1OGidgv_qTGzF3nch7RYFYukvJYKwd8TDlAo-xmDsv2sORR-AGAIQfQDiHEBiPQwsZ4y5YEBUIFrgX29RgQM</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>An, To Truong</creator><creator>Lee, Byung Moo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9394-3387</orcidid><orcidid>https://orcid.org/0000-0003-3675-929X</orcidid></search><sort><creationdate>2023</creationdate><title>Robust Automatic Modulation Classification in Low Signal to Noise Ratio</title><author>An, To Truong ; Lee, Byung Moo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-5a7b957b36ae95f1600274f550287e707f5265db1ada785cefb453cb6f0565b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>autoencoder denoiser</topic><topic>Automatic modulation classification</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Computer networks</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>denoise signal</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Modulation</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Signal classification</topic><topic>Signal processing algorithms</topic><topic>Signal to noise ratio</topic><topic>Technology assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, To Truong</creatorcontrib><creatorcontrib>Lee, Byung Moo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, To Truong</au><au>Lee, Byung Moo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Automatic Modulation Classification in Low Signal to Noise Ratio</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>7860</spage><epage>7872</epage><pages>7860-7872</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In a non-cooperative communication environment, automatic modulation classification (AMC) is an essential technology for analyzing signals and classifying different kinds of signal modulation before they are demodulated. Deep learning (DL)-based AMC has been proposed as an efficient method of achieving high classification performance. However, most current DL-AMC methods have limited generalization capabilities under varying noise conditions, especially at low signal-to-noise ratios (SNRs). Therefore, these methods can not be directly applied to practical systems. In this paper, we propose a threshold autoencoder denoiser convolutional neural network (TADCNN), which consists of a threshold autoencoder denoiser (TAD) and a convolutional neural network (CNN). TADs reduce noise power and clean input signals, which are then passed on to CNN for classification. The TAD network generally consists of three components: the batch normalization layer, the autoencoder, and the threshold denoise. The threshold denoise component uses an auto-learning threshold sub-network to compute thresholds automatically. According to experiments, AMC with TAD improved classification accuracy by 70% at low SNR compared with a model without a denoiser. Additionally, our model achieves an average accuracy of 66.64% on the RML2016.10A dataset, which is 6% to 18% higher than the current AMC model.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3238995</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9394-3387</orcidid><orcidid>https://orcid.org/0000-0003-3675-929X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.7860-7872 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2770782009 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial neural networks autoencoder denoiser Automatic modulation classification Classification Classification algorithms Computer networks convolutional neural network Convolutional neural networks Deep learning denoise signal Feature extraction Machine learning Modulation Neural networks Noise reduction Signal classification Signal processing algorithms Signal to noise ratio Technology assessment |
title | Robust Automatic Modulation Classification in Low Signal to Noise Ratio |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Automatic%20Modulation%20Classification%20in%20Low%20Signal%20to%20Noise%20Ratio&rft.jtitle=IEEE%20access&rft.au=An,%20To%20Truong&rft.date=2023&rft.volume=11&rft.spage=7860&rft.epage=7872&rft.pages=7860-7872&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3238995&rft_dat=%3Cproquest_cross%3E2770782009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770782009&rft_id=info:pmid/&rft_ieee_id=10024264&rft_doaj_id=oai_doaj_org_article_ff57e4d7de894acc84ed551ca660dc9f&rfr_iscdi=true |