Robust Automatic Modulation Classification in Low Signal to Noise Ratio

In a non-cooperative communication environment, automatic modulation classification (AMC) is an essential technology for analyzing signals and classifying different kinds of signal modulation before they are demodulated. Deep learning (DL)-based AMC has been proposed as an efficient method of achiev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.7860-7872
Hauptverfasser: An, To Truong, Lee, Byung Moo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7872
container_issue
container_start_page 7860
container_title IEEE access
container_volume 11
creator An, To Truong
Lee, Byung Moo
description In a non-cooperative communication environment, automatic modulation classification (AMC) is an essential technology for analyzing signals and classifying different kinds of signal modulation before they are demodulated. Deep learning (DL)-based AMC has been proposed as an efficient method of achieving high classification performance. However, most current DL-AMC methods have limited generalization capabilities under varying noise conditions, especially at low signal-to-noise ratios (SNRs). Therefore, these methods can not be directly applied to practical systems. In this paper, we propose a threshold autoencoder denoiser convolutional neural network (TADCNN), which consists of a threshold autoencoder denoiser (TAD) and a convolutional neural network (CNN). TADs reduce noise power and clean input signals, which are then passed on to CNN for classification. The TAD network generally consists of three components: the batch normalization layer, the autoencoder, and the threshold denoise. The threshold denoise component uses an auto-learning threshold sub-network to compute thresholds automatically. According to experiments, AMC with TAD improved classification accuracy by 70% at low SNR compared with a model without a denoiser. Additionally, our model achieves an average accuracy of 66.64% on the RML2016.10A dataset, which is 6% to 18% higher than the current AMC model.
doi_str_mv 10.1109/ACCESS.2023.3238995
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2770782009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10024264</ieee_id><doaj_id>oai_doaj_org_article_ff57e4d7de894acc84ed551ca660dc9f</doaj_id><sourcerecordid>2770782009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-5a7b957b36ae95f1600274f550287e707f5265db1ada785cefb453cb6f0565b93</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaLgmPsF-hDweTNNmqR5HGXOwVTY9Dmk-RgZ3TKTFvHfm9ohuy-5ObnnnFxOlt3ncJbnkD_Nq2qx3c4QRHiGES45J1fZCOWUTzHB9Pqiv80mMe5hqjJBhI2y5cbXXWzBvGv9QbZOgVevuyZ1_giqRsborFPD1R3B2n-DrdsdZQNaD968iwZs-te77MbKJprJ-Rxnn8-Lj-plun5frqr5eqow5u2USFYn3xpTaTixOYUQscISAlHJDIPMEkSJrnOpJSuJMrYuCFY1tZBQUnM8zlaDrvZyL07BHWT4EV468Qf4sBMypDUaI6wlzBSaaVPyQipVFkYTkitJKdSK26T1OGidgv_qTGzF3nch7RYFYukvJYKwd8TDlAo-xmDsv2sORR-AGAIQfQDiHEBiPQwsZ4y5YEBUIFrgX29RgQM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770782009</pqid></control><display><type>article</type><title>Robust Automatic Modulation Classification in Low Signal to Noise Ratio</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>An, To Truong ; Lee, Byung Moo</creator><creatorcontrib>An, To Truong ; Lee, Byung Moo</creatorcontrib><description>In a non-cooperative communication environment, automatic modulation classification (AMC) is an essential technology for analyzing signals and classifying different kinds of signal modulation before they are demodulated. Deep learning (DL)-based AMC has been proposed as an efficient method of achieving high classification performance. However, most current DL-AMC methods have limited generalization capabilities under varying noise conditions, especially at low signal-to-noise ratios (SNRs). Therefore, these methods can not be directly applied to practical systems. In this paper, we propose a threshold autoencoder denoiser convolutional neural network (TADCNN), which consists of a threshold autoencoder denoiser (TAD) and a convolutional neural network (CNN). TADs reduce noise power and clean input signals, which are then passed on to CNN for classification. The TAD network generally consists of three components: the batch normalization layer, the autoencoder, and the threshold denoise. The threshold denoise component uses an auto-learning threshold sub-network to compute thresholds automatically. According to experiments, AMC with TAD improved classification accuracy by 70% at low SNR compared with a model without a denoiser. Additionally, our model achieves an average accuracy of 66.64% on the RML2016.10A dataset, which is 6% to 18% higher than the current AMC model.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3238995</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; autoencoder denoiser ; Automatic modulation classification ; Classification ; Classification algorithms ; Computer networks ; convolutional neural network ; Convolutional neural networks ; Deep learning ; denoise signal ; Feature extraction ; Machine learning ; Modulation ; Neural networks ; Noise reduction ; Signal classification ; Signal processing algorithms ; Signal to noise ratio ; Technology assessment</subject><ispartof>IEEE access, 2023, Vol.11, p.7860-7872</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-5a7b957b36ae95f1600274f550287e707f5265db1ada785cefb453cb6f0565b93</citedby><cites>FETCH-LOGICAL-c339t-5a7b957b36ae95f1600274f550287e707f5265db1ada785cefb453cb6f0565b93</cites><orcidid>0000-0002-9394-3387 ; 0000-0003-3675-929X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10024264$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>An, To Truong</creatorcontrib><creatorcontrib>Lee, Byung Moo</creatorcontrib><title>Robust Automatic Modulation Classification in Low Signal to Noise Ratio</title><title>IEEE access</title><addtitle>Access</addtitle><description>In a non-cooperative communication environment, automatic modulation classification (AMC) is an essential technology for analyzing signals and classifying different kinds of signal modulation before they are demodulated. Deep learning (DL)-based AMC has been proposed as an efficient method of achieving high classification performance. However, most current DL-AMC methods have limited generalization capabilities under varying noise conditions, especially at low signal-to-noise ratios (SNRs). Therefore, these methods can not be directly applied to practical systems. In this paper, we propose a threshold autoencoder denoiser convolutional neural network (TADCNN), which consists of a threshold autoencoder denoiser (TAD) and a convolutional neural network (CNN). TADs reduce noise power and clean input signals, which are then passed on to CNN for classification. The TAD network generally consists of three components: the batch normalization layer, the autoencoder, and the threshold denoise. The threshold denoise component uses an auto-learning threshold sub-network to compute thresholds automatically. According to experiments, AMC with TAD improved classification accuracy by 70% at low SNR compared with a model without a denoiser. Additionally, our model achieves an average accuracy of 66.64% on the RML2016.10A dataset, which is 6% to 18% higher than the current AMC model.</description><subject>Artificial neural networks</subject><subject>autoencoder denoiser</subject><subject>Automatic modulation classification</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Computer networks</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>denoise signal</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Modulation</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Signal classification</subject><subject>Signal processing algorithms</subject><subject>Signal to noise ratio</subject><subject>Technology assessment</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaLgmPsF-hDweTNNmqR5HGXOwVTY9Dmk-RgZ3TKTFvHfm9ohuy-5ObnnnFxOlt3ncJbnkD_Nq2qx3c4QRHiGES45J1fZCOWUTzHB9Pqiv80mMe5hqjJBhI2y5cbXXWzBvGv9QbZOgVevuyZ1_giqRsborFPD1R3B2n-DrdsdZQNaD968iwZs-te77MbKJprJ-Rxnn8-Lj-plun5frqr5eqow5u2USFYn3xpTaTixOYUQscISAlHJDIPMEkSJrnOpJSuJMrYuCFY1tZBQUnM8zlaDrvZyL07BHWT4EV468Qf4sBMypDUaI6wlzBSaaVPyQipVFkYTkitJKdSK26T1OGidgv_qTGzF3nch7RYFYukvJYKwd8TDlAo-xmDsv2sORR-AGAIQfQDiHEBiPQwsZ4y5YEBUIFrgX29RgQM</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>An, To Truong</creator><creator>Lee, Byung Moo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9394-3387</orcidid><orcidid>https://orcid.org/0000-0003-3675-929X</orcidid></search><sort><creationdate>2023</creationdate><title>Robust Automatic Modulation Classification in Low Signal to Noise Ratio</title><author>An, To Truong ; Lee, Byung Moo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-5a7b957b36ae95f1600274f550287e707f5265db1ada785cefb453cb6f0565b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>autoencoder denoiser</topic><topic>Automatic modulation classification</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Computer networks</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>denoise signal</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Modulation</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Signal classification</topic><topic>Signal processing algorithms</topic><topic>Signal to noise ratio</topic><topic>Technology assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, To Truong</creatorcontrib><creatorcontrib>Lee, Byung Moo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, To Truong</au><au>Lee, Byung Moo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Automatic Modulation Classification in Low Signal to Noise Ratio</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>7860</spage><epage>7872</epage><pages>7860-7872</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In a non-cooperative communication environment, automatic modulation classification (AMC) is an essential technology for analyzing signals and classifying different kinds of signal modulation before they are demodulated. Deep learning (DL)-based AMC has been proposed as an efficient method of achieving high classification performance. However, most current DL-AMC methods have limited generalization capabilities under varying noise conditions, especially at low signal-to-noise ratios (SNRs). Therefore, these methods can not be directly applied to practical systems. In this paper, we propose a threshold autoencoder denoiser convolutional neural network (TADCNN), which consists of a threshold autoencoder denoiser (TAD) and a convolutional neural network (CNN). TADs reduce noise power and clean input signals, which are then passed on to CNN for classification. The TAD network generally consists of three components: the batch normalization layer, the autoencoder, and the threshold denoise. The threshold denoise component uses an auto-learning threshold sub-network to compute thresholds automatically. According to experiments, AMC with TAD improved classification accuracy by 70% at low SNR compared with a model without a denoiser. Additionally, our model achieves an average accuracy of 66.64% on the RML2016.10A dataset, which is 6% to 18% higher than the current AMC model.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3238995</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9394-3387</orcidid><orcidid>https://orcid.org/0000-0003-3675-929X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.7860-7872
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2770782009
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
autoencoder denoiser
Automatic modulation classification
Classification
Classification algorithms
Computer networks
convolutional neural network
Convolutional neural networks
Deep learning
denoise signal
Feature extraction
Machine learning
Modulation
Neural networks
Noise reduction
Signal classification
Signal processing algorithms
Signal to noise ratio
Technology assessment
title Robust Automatic Modulation Classification in Low Signal to Noise Ratio
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Automatic%20Modulation%20Classification%20in%20Low%20Signal%20to%20Noise%20Ratio&rft.jtitle=IEEE%20access&rft.au=An,%20To%20Truong&rft.date=2023&rft.volume=11&rft.spage=7860&rft.epage=7872&rft.pages=7860-7872&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3238995&rft_dat=%3Cproquest_cross%3E2770782009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770782009&rft_id=info:pmid/&rft_ieee_id=10024264&rft_doaj_id=oai_doaj_org_article_ff57e4d7de894acc84ed551ca660dc9f&rfr_iscdi=true