Hydroxide ion-conducting viologen-bakelite organic frameworks for flexible solid-state zinc-air battery applications
Adaptable polymer-based solid-state electrolytes can be a game-changer toward safe, lightweight flexible batteries. We present a robust Bakelite-type organic polymer covalently decked with viologen, triazine, and phenolic moieties. Its flexible structure with cationic viologen centers incorporates c...
Gespeichert in:
Veröffentlicht in: | Nanoscale horizons 2023-01, Vol.8 (2), p.224-234 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 234 |
---|---|
container_issue | 2 |
container_start_page | 224 |
container_title | Nanoscale horizons |
container_volume | 8 |
creator | Rase, Deepak Illathvalappil, Rajith Singh, Himan Dev Shekhar, Pragalbh Leo, Liya S Chakraborty, Debanjan Haldar, Sattwick Shelke, Ankita Ajithkumar, Thalasseril G Vaidhyanathan, Ramanathan |
description | Adaptable polymer-based solid-state electrolytes can be a game-changer toward safe, lightweight flexible batteries. We present a robust Bakelite-type organic polymer covalently decked with viologen, triazine, and phenolic moieties. Its flexible structure with cationic viologen centers incorporates counter-balancing free hydroxide ions into the polymeric framework. By design, the aromatic groups and heteroatoms in the framework can be activated under an applied potential to prompt a push-pull drive, setting off the towing of hydroxide ions
via
weak electrostatic, van der Waals, and hydrogen-bond interactions. The frontier orbitals from a DFT-modeled structure certify this. The hydroxyl-polymer requires minimal KOH wetting to maintain a humid environment for Grotthuss-type transport. The hydroxide ion conductivity reaches a value of 1.4 × 10
−2
S cm
−1
at 80 °C and 95% RH, which is retained for over 15 h. We enhanced its practical utility by coating it as a thin solid-state separator-cum-electrolyte on readily available filter paper. The composite exhibits a conductivity of 4.5 × 10
−3
S cm
−1
at 80 °C and 95% RH. A zinc-air battery (ZAB) constructed using this polymer-coated paper as electrolyte yields a maximum power density of 115 mW cm
−2
and high specific capacitance of 435 mA h g
−1
. The power density recorded for our ZAB is among the best reported for polymer electrolyte-based batteries. Subsequently, the flexible battery fabricated with IISERP-POF11_OH@FilterPaper exhibits an OCV of 1.44 V, and three batteries in series power a demo traffic signal. To underscore the efficiency of hydroxide ion transport through the complex multifunctional backbone of the polymer, we calculated the diffusion coefficient for OH
−
(Exp: 2.9 × 10
−5
cm
2
s
−1
; Comp. 5.2 × 10
−6
cm
2
s
−1
) using electrochemical methods and MD simulations. Climbing-edge NEB calculations reveal a large energy barrier of 2.11 eV for Zn
2+
to penetrate the polymer and identify hydroxide ions within the polymer, suggesting no undesirable Zn
2+
crossover. Our findings assert the readily accessible C-C-linked cationic polymer's capacity as a solid-state electrolyte for ZABs and any anion-conducting membrane.
A cationic bakelite-viologen polymer with counter-balancing hydroxide ions serves as a solid-state electrolyte for zinc-air battery. |
doi_str_mv | 10.1039/d2nh00455k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2770606548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770606548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-82fe17ce9e8c8d3cf4dc7a0ac84932eb6e82bcbf6e17ff5ded9c9b733871bb5b3</originalsourceid><addsrcrecordid>eNpd0c9vFCEUB3BiNLapvXjXkHgxJqMwDANzNK11jY1e9Dzhx2Oly8IKTO3614tuXRNPvIRP3nt5X4SeUvKaEja9sX38RsjA-eYBOu0J590oxuHhsebjCTov5YYQQiUVk2SP0QkbOaX9JE5RXe1tTnfeAvYpdiZFu5jq4xrf-hTSGmKn1QaCr4BTXqvoDXZZbeFHypuCXcrYBbjzOgAuKXjblaqa_emj6ZTPWKtaIe-x2u2CN6q2KeUJeuRUKHB-_56hr1fvvlysuuvP7z9cvL3uDBOsdrJ3QIWBCaSRlhk3WCMUUUYOE-tBjyB7bbQbm3KOW7CTmbRgTAqqNdfsDL089N3l9H2BUuetLwZCUBHSUuZe8IEM08BIoy_-ozdpybFt15QgIxn5IJt6dVAmp1IyuHmX_Vbl_UzJ_DuO-bL_tPoTx8eGn9-3XPQW7JH-PX4Dzw4gF3P8_Zcn-wWeOZIq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770606548</pqid></control><display><type>article</type><title>Hydroxide ion-conducting viologen-bakelite organic frameworks for flexible solid-state zinc-air battery applications</title><source>Royal Society Of Chemistry Journals</source><creator>Rase, Deepak ; Illathvalappil, Rajith ; Singh, Himan Dev ; Shekhar, Pragalbh ; Leo, Liya S ; Chakraborty, Debanjan ; Haldar, Sattwick ; Shelke, Ankita ; Ajithkumar, Thalasseril G ; Vaidhyanathan, Ramanathan</creator><creatorcontrib>Rase, Deepak ; Illathvalappil, Rajith ; Singh, Himan Dev ; Shekhar, Pragalbh ; Leo, Liya S ; Chakraborty, Debanjan ; Haldar, Sattwick ; Shelke, Ankita ; Ajithkumar, Thalasseril G ; Vaidhyanathan, Ramanathan</creatorcontrib><description>Adaptable polymer-based solid-state electrolytes can be a game-changer toward safe, lightweight flexible batteries. We present a robust Bakelite-type organic polymer covalently decked with viologen, triazine, and phenolic moieties. Its flexible structure with cationic viologen centers incorporates counter-balancing free hydroxide ions into the polymeric framework. By design, the aromatic groups and heteroatoms in the framework can be activated under an applied potential to prompt a push-pull drive, setting off the towing of hydroxide ions
via
weak electrostatic, van der Waals, and hydrogen-bond interactions. The frontier orbitals from a DFT-modeled structure certify this. The hydroxyl-polymer requires minimal KOH wetting to maintain a humid environment for Grotthuss-type transport. The hydroxide ion conductivity reaches a value of 1.4 × 10
−2
S cm
−1
at 80 °C and 95% RH, which is retained for over 15 h. We enhanced its practical utility by coating it as a thin solid-state separator-cum-electrolyte on readily available filter paper. The composite exhibits a conductivity of 4.5 × 10
−3
S cm
−1
at 80 °C and 95% RH. A zinc-air battery (ZAB) constructed using this polymer-coated paper as electrolyte yields a maximum power density of 115 mW cm
−2
and high specific capacitance of 435 mA h g
−1
. The power density recorded for our ZAB is among the best reported for polymer electrolyte-based batteries. Subsequently, the flexible battery fabricated with IISERP-POF11_OH@FilterPaper exhibits an OCV of 1.44 V, and three batteries in series power a demo traffic signal. To underscore the efficiency of hydroxide ion transport through the complex multifunctional backbone of the polymer, we calculated the diffusion coefficient for OH
−
(Exp: 2.9 × 10
−5
cm
2
s
−1
; Comp. 5.2 × 10
−6
cm
2
s
−1
) using electrochemical methods and MD simulations. Climbing-edge NEB calculations reveal a large energy barrier of 2.11 eV for Zn
2+
to penetrate the polymer and identify hydroxide ions within the polymer, suggesting no undesirable Zn
2+
crossover. Our findings assert the readily accessible C-C-linked cationic polymer's capacity as a solid-state electrolyte for ZABs and any anion-conducting membrane.
A cationic bakelite-viologen polymer with counter-balancing hydroxide ions serves as a solid-state electrolyte for zinc-air battery.</description><identifier>ISSN: 2055-6756</identifier><identifier>ISSN: 2055-6764</identifier><identifier>EISSN: 2055-6764</identifier><identifier>DOI: 10.1039/d2nh00455k</identifier><identifier>PMID: 36511297</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Bakelite ; Cationic polymerization ; Diffusion coefficient ; Electrolytes ; Filter paper ; Flexible structures ; Hydrogen bonds ; Ion transport ; Ions ; Maximum power density ; Metal air batteries ; Molten salt electrolytes ; Polymer coatings ; Polymers ; Solid electrolytes ; Solid state ; Traffic signals ; Vinyl resins ; Wetting ; Zinc-oxygen batteries</subject><ispartof>Nanoscale horizons, 2023-01, Vol.8 (2), p.224-234</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-82fe17ce9e8c8d3cf4dc7a0ac84932eb6e82bcbf6e17ff5ded9c9b733871bb5b3</citedby><cites>FETCH-LOGICAL-c373t-82fe17ce9e8c8d3cf4dc7a0ac84932eb6e82bcbf6e17ff5ded9c9b733871bb5b3</cites><orcidid>0000-0003-4490-4397 ; 0000-0002-3766-122X ; 0000-0002-4041-2451 ; 0000-0001-7639-1165 ; 0000-0002-0830-1292 ; 0000-0001-9337-4287 ; 0000-0001-9529-5021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36511297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rase, Deepak</creatorcontrib><creatorcontrib>Illathvalappil, Rajith</creatorcontrib><creatorcontrib>Singh, Himan Dev</creatorcontrib><creatorcontrib>Shekhar, Pragalbh</creatorcontrib><creatorcontrib>Leo, Liya S</creatorcontrib><creatorcontrib>Chakraborty, Debanjan</creatorcontrib><creatorcontrib>Haldar, Sattwick</creatorcontrib><creatorcontrib>Shelke, Ankita</creatorcontrib><creatorcontrib>Ajithkumar, Thalasseril G</creatorcontrib><creatorcontrib>Vaidhyanathan, Ramanathan</creatorcontrib><title>Hydroxide ion-conducting viologen-bakelite organic frameworks for flexible solid-state zinc-air battery applications</title><title>Nanoscale horizons</title><addtitle>Nanoscale Horiz</addtitle><description>Adaptable polymer-based solid-state electrolytes can be a game-changer toward safe, lightweight flexible batteries. We present a robust Bakelite-type organic polymer covalently decked with viologen, triazine, and phenolic moieties. Its flexible structure with cationic viologen centers incorporates counter-balancing free hydroxide ions into the polymeric framework. By design, the aromatic groups and heteroatoms in the framework can be activated under an applied potential to prompt a push-pull drive, setting off the towing of hydroxide ions
via
weak electrostatic, van der Waals, and hydrogen-bond interactions. The frontier orbitals from a DFT-modeled structure certify this. The hydroxyl-polymer requires minimal KOH wetting to maintain a humid environment for Grotthuss-type transport. The hydroxide ion conductivity reaches a value of 1.4 × 10
−2
S cm
−1
at 80 °C and 95% RH, which is retained for over 15 h. We enhanced its practical utility by coating it as a thin solid-state separator-cum-electrolyte on readily available filter paper. The composite exhibits a conductivity of 4.5 × 10
−3
S cm
−1
at 80 °C and 95% RH. A zinc-air battery (ZAB) constructed using this polymer-coated paper as electrolyte yields a maximum power density of 115 mW cm
−2
and high specific capacitance of 435 mA h g
−1
. The power density recorded for our ZAB is among the best reported for polymer electrolyte-based batteries. Subsequently, the flexible battery fabricated with IISERP-POF11_OH@FilterPaper exhibits an OCV of 1.44 V, and three batteries in series power a demo traffic signal. To underscore the efficiency of hydroxide ion transport through the complex multifunctional backbone of the polymer, we calculated the diffusion coefficient for OH
−
(Exp: 2.9 × 10
−5
cm
2
s
−1
; Comp. 5.2 × 10
−6
cm
2
s
−1
) using electrochemical methods and MD simulations. Climbing-edge NEB calculations reveal a large energy barrier of 2.11 eV for Zn
2+
to penetrate the polymer and identify hydroxide ions within the polymer, suggesting no undesirable Zn
2+
crossover. Our findings assert the readily accessible C-C-linked cationic polymer's capacity as a solid-state electrolyte for ZABs and any anion-conducting membrane.
A cationic bakelite-viologen polymer with counter-balancing hydroxide ions serves as a solid-state electrolyte for zinc-air battery.</description><subject>Bakelite</subject><subject>Cationic polymerization</subject><subject>Diffusion coefficient</subject><subject>Electrolytes</subject><subject>Filter paper</subject><subject>Flexible structures</subject><subject>Hydrogen bonds</subject><subject>Ion transport</subject><subject>Ions</subject><subject>Maximum power density</subject><subject>Metal air batteries</subject><subject>Molten salt electrolytes</subject><subject>Polymer coatings</subject><subject>Polymers</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><subject>Traffic signals</subject><subject>Vinyl resins</subject><subject>Wetting</subject><subject>Zinc-oxygen batteries</subject><issn>2055-6756</issn><issn>2055-6764</issn><issn>2055-6764</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0c9vFCEUB3BiNLapvXjXkHgxJqMwDANzNK11jY1e9Dzhx2Oly8IKTO3614tuXRNPvIRP3nt5X4SeUvKaEja9sX38RsjA-eYBOu0J590oxuHhsebjCTov5YYQQiUVk2SP0QkbOaX9JE5RXe1tTnfeAvYpdiZFu5jq4xrf-hTSGmKn1QaCr4BTXqvoDXZZbeFHypuCXcrYBbjzOgAuKXjblaqa_emj6ZTPWKtaIe-x2u2CN6q2KeUJeuRUKHB-_56hr1fvvlysuuvP7z9cvL3uDBOsdrJ3QIWBCaSRlhk3WCMUUUYOE-tBjyB7bbQbm3KOW7CTmbRgTAqqNdfsDL089N3l9H2BUuetLwZCUBHSUuZe8IEM08BIoy_-ozdpybFt15QgIxn5IJt6dVAmp1IyuHmX_Vbl_UzJ_DuO-bL_tPoTx8eGn9-3XPQW7JH-PX4Dzw4gF3P8_Zcn-wWeOZIq</recordid><startdate>20230130</startdate><enddate>20230130</enddate><creator>Rase, Deepak</creator><creator>Illathvalappil, Rajith</creator><creator>Singh, Himan Dev</creator><creator>Shekhar, Pragalbh</creator><creator>Leo, Liya S</creator><creator>Chakraborty, Debanjan</creator><creator>Haldar, Sattwick</creator><creator>Shelke, Ankita</creator><creator>Ajithkumar, Thalasseril G</creator><creator>Vaidhyanathan, Ramanathan</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4490-4397</orcidid><orcidid>https://orcid.org/0000-0002-3766-122X</orcidid><orcidid>https://orcid.org/0000-0002-4041-2451</orcidid><orcidid>https://orcid.org/0000-0001-7639-1165</orcidid><orcidid>https://orcid.org/0000-0002-0830-1292</orcidid><orcidid>https://orcid.org/0000-0001-9337-4287</orcidid><orcidid>https://orcid.org/0000-0001-9529-5021</orcidid></search><sort><creationdate>20230130</creationdate><title>Hydroxide ion-conducting viologen-bakelite organic frameworks for flexible solid-state zinc-air battery applications</title><author>Rase, Deepak ; Illathvalappil, Rajith ; Singh, Himan Dev ; Shekhar, Pragalbh ; Leo, Liya S ; Chakraborty, Debanjan ; Haldar, Sattwick ; Shelke, Ankita ; Ajithkumar, Thalasseril G ; Vaidhyanathan, Ramanathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-82fe17ce9e8c8d3cf4dc7a0ac84932eb6e82bcbf6e17ff5ded9c9b733871bb5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bakelite</topic><topic>Cationic polymerization</topic><topic>Diffusion coefficient</topic><topic>Electrolytes</topic><topic>Filter paper</topic><topic>Flexible structures</topic><topic>Hydrogen bonds</topic><topic>Ion transport</topic><topic>Ions</topic><topic>Maximum power density</topic><topic>Metal air batteries</topic><topic>Molten salt electrolytes</topic><topic>Polymer coatings</topic><topic>Polymers</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><topic>Traffic signals</topic><topic>Vinyl resins</topic><topic>Wetting</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rase, Deepak</creatorcontrib><creatorcontrib>Illathvalappil, Rajith</creatorcontrib><creatorcontrib>Singh, Himan Dev</creatorcontrib><creatorcontrib>Shekhar, Pragalbh</creatorcontrib><creatorcontrib>Leo, Liya S</creatorcontrib><creatorcontrib>Chakraborty, Debanjan</creatorcontrib><creatorcontrib>Haldar, Sattwick</creatorcontrib><creatorcontrib>Shelke, Ankita</creatorcontrib><creatorcontrib>Ajithkumar, Thalasseril G</creatorcontrib><creatorcontrib>Vaidhyanathan, Ramanathan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rase, Deepak</au><au>Illathvalappil, Rajith</au><au>Singh, Himan Dev</au><au>Shekhar, Pragalbh</au><au>Leo, Liya S</au><au>Chakraborty, Debanjan</au><au>Haldar, Sattwick</au><au>Shelke, Ankita</au><au>Ajithkumar, Thalasseril G</au><au>Vaidhyanathan, Ramanathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydroxide ion-conducting viologen-bakelite organic frameworks for flexible solid-state zinc-air battery applications</atitle><jtitle>Nanoscale horizons</jtitle><addtitle>Nanoscale Horiz</addtitle><date>2023-01-30</date><risdate>2023</risdate><volume>8</volume><issue>2</issue><spage>224</spage><epage>234</epage><pages>224-234</pages><issn>2055-6756</issn><issn>2055-6764</issn><eissn>2055-6764</eissn><abstract>Adaptable polymer-based solid-state electrolytes can be a game-changer toward safe, lightweight flexible batteries. We present a robust Bakelite-type organic polymer covalently decked with viologen, triazine, and phenolic moieties. Its flexible structure with cationic viologen centers incorporates counter-balancing free hydroxide ions into the polymeric framework. By design, the aromatic groups and heteroatoms in the framework can be activated under an applied potential to prompt a push-pull drive, setting off the towing of hydroxide ions
via
weak electrostatic, van der Waals, and hydrogen-bond interactions. The frontier orbitals from a DFT-modeled structure certify this. The hydroxyl-polymer requires minimal KOH wetting to maintain a humid environment for Grotthuss-type transport. The hydroxide ion conductivity reaches a value of 1.4 × 10
−2
S cm
−1
at 80 °C and 95% RH, which is retained for over 15 h. We enhanced its practical utility by coating it as a thin solid-state separator-cum-electrolyte on readily available filter paper. The composite exhibits a conductivity of 4.5 × 10
−3
S cm
−1
at 80 °C and 95% RH. A zinc-air battery (ZAB) constructed using this polymer-coated paper as electrolyte yields a maximum power density of 115 mW cm
−2
and high specific capacitance of 435 mA h g
−1
. The power density recorded for our ZAB is among the best reported for polymer electrolyte-based batteries. Subsequently, the flexible battery fabricated with IISERP-POF11_OH@FilterPaper exhibits an OCV of 1.44 V, and three batteries in series power a demo traffic signal. To underscore the efficiency of hydroxide ion transport through the complex multifunctional backbone of the polymer, we calculated the diffusion coefficient for OH
−
(Exp: 2.9 × 10
−5
cm
2
s
−1
; Comp. 5.2 × 10
−6
cm
2
s
−1
) using electrochemical methods and MD simulations. Climbing-edge NEB calculations reveal a large energy barrier of 2.11 eV for Zn
2+
to penetrate the polymer and identify hydroxide ions within the polymer, suggesting no undesirable Zn
2+
crossover. Our findings assert the readily accessible C-C-linked cationic polymer's capacity as a solid-state electrolyte for ZABs and any anion-conducting membrane.
A cationic bakelite-viologen polymer with counter-balancing hydroxide ions serves as a solid-state electrolyte for zinc-air battery.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36511297</pmid><doi>10.1039/d2nh00455k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4490-4397</orcidid><orcidid>https://orcid.org/0000-0002-3766-122X</orcidid><orcidid>https://orcid.org/0000-0002-4041-2451</orcidid><orcidid>https://orcid.org/0000-0001-7639-1165</orcidid><orcidid>https://orcid.org/0000-0002-0830-1292</orcidid><orcidid>https://orcid.org/0000-0001-9337-4287</orcidid><orcidid>https://orcid.org/0000-0001-9529-5021</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2055-6756 |
ispartof | Nanoscale horizons, 2023-01, Vol.8 (2), p.224-234 |
issn | 2055-6756 2055-6764 2055-6764 |
language | eng |
recordid | cdi_proquest_journals_2770606548 |
source | Royal Society Of Chemistry Journals |
subjects | Bakelite Cationic polymerization Diffusion coefficient Electrolytes Filter paper Flexible structures Hydrogen bonds Ion transport Ions Maximum power density Metal air batteries Molten salt electrolytes Polymer coatings Polymers Solid electrolytes Solid state Traffic signals Vinyl resins Wetting Zinc-oxygen batteries |
title | Hydroxide ion-conducting viologen-bakelite organic frameworks for flexible solid-state zinc-air battery applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydroxide%20ion-conducting%20viologen-bakelite%20organic%20frameworks%20for%20flexible%20solid-state%20zinc-air%20battery%20applications&rft.jtitle=Nanoscale%20horizons&rft.au=Rase,%20Deepak&rft.date=2023-01-30&rft.volume=8&rft.issue=2&rft.spage=224&rft.epage=234&rft.pages=224-234&rft.issn=2055-6756&rft.eissn=2055-6764&rft_id=info:doi/10.1039/d2nh00455k&rft_dat=%3Cproquest_cross%3E2770606548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770606548&rft_id=info:pmid/36511297&rfr_iscdi=true |