Invariant hypercomplex structures and algebraic curves

We show that U(k)$U(k)$‐invariant hypercomplex structures on (open subsets) of regular semisimple adjoint orbits in gl(k,C)${\mathfrak {g} \mathfrak {l}}(k,{\mathbb {C}})$ correspond to algebraic curves C of genus (k−1)2$(k-1)^2$, equipped with a flat projection π:C→P1$\pi :C\rightarrow {\mathbb {P}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2023-01, Vol.296 (1), p.122-129
1. Verfasser: Bielawski, Roger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129
container_issue 1
container_start_page 122
container_title Mathematische Nachrichten
container_volume 296
creator Bielawski, Roger
description We show that U(k)$U(k)$‐invariant hypercomplex structures on (open subsets) of regular semisimple adjoint orbits in gl(k,C)${\mathfrak {g} \mathfrak {l}}(k,{\mathbb {C}})$ correspond to algebraic curves C of genus (k−1)2$(k-1)^2$, equipped with a flat projection π:C→P1$\pi :C\rightarrow {\mathbb {P}}^1$ of degree k, and an antiholomorphic involution σ:C→C$\sigma :C\rightarrow C$ covering the antipodal map on P1${\mathbb {P}}^1$.
doi_str_mv 10.1002/mana.202100223
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2770433351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770433351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3123-887f9a21c62ef31247147da7bacedd2322bfc77b24d3e8c6ccca6cdcc31972c43</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFavngOeU3dnk93kWIofhaoXBW_LZLLRlHy5m1T7702J6NHTMC_PMwMvY5eCLwTncF1jgwvgcFhAHrGZiAFCUEIds9mYxWGcRK-n7Mz7Lec8TbWaMbVuduhKbPrgfd9ZR23dVfYr8L0bqB-c9QE2eYDVm80clhTQ4HbWn7OTAitvL37mnL3c3jyv7sPN0916tdyEJAXIMEl0kSIIUmCLMYm0iHSOOkOyeQ4SICtI6wyiXNqEFBGhopxGO9VAkZyzq-lu59qPwfrebNvBNeNLA1rzSEoZi5FaTBS51ntnC9O5ska3N4KbQx3m0I357WYU0kn4LCu7_4c2D8vH5Z_7DbGyaLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770433351</pqid></control><display><type>article</type><title>Invariant hypercomplex structures and algebraic curves</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bielawski, Roger</creator><creatorcontrib>Bielawski, Roger</creatorcontrib><description>We show that U(k)$U(k)$‐invariant hypercomplex structures on (open subsets) of regular semisimple adjoint orbits in gl(k,C)${\mathfrak {g} \mathfrak {l}}(k,{\mathbb {C}})$ correspond to algebraic curves C of genus (k−1)2$(k-1)^2$, equipped with a flat projection π:C→P1$\pi :C\rightarrow {\mathbb {P}}^1$ of degree k, and an antiholomorphic involution σ:C→C$\sigma :C\rightarrow C$ covering the antipodal map on P1${\mathbb {P}}^1$.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.202100223</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>adjoint orbits ; Algebra ; algebraic curves ; Hilbert schemes of morphisms ; hypercomplex structures ; Invariants</subject><ispartof>Mathematische Nachrichten, 2023-01, Vol.296 (1), p.122-129</ispartof><rights>2022 Wiley‐VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3123-887f9a21c62ef31247147da7bacedd2322bfc77b24d3e8c6ccca6cdcc31972c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.202100223$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.202100223$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Bielawski, Roger</creatorcontrib><title>Invariant hypercomplex structures and algebraic curves</title><title>Mathematische Nachrichten</title><description>We show that U(k)$U(k)$‐invariant hypercomplex structures on (open subsets) of regular semisimple adjoint orbits in gl(k,C)${\mathfrak {g} \mathfrak {l}}(k,{\mathbb {C}})$ correspond to algebraic curves C of genus (k−1)2$(k-1)^2$, equipped with a flat projection π:C→P1$\pi :C\rightarrow {\mathbb {P}}^1$ of degree k, and an antiholomorphic involution σ:C→C$\sigma :C\rightarrow C$ covering the antipodal map on P1${\mathbb {P}}^1$.</description><subject>adjoint orbits</subject><subject>Algebra</subject><subject>algebraic curves</subject><subject>Hilbert schemes of morphisms</subject><subject>hypercomplex structures</subject><subject>Invariants</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFavngOeU3dnk93kWIofhaoXBW_LZLLRlHy5m1T7702J6NHTMC_PMwMvY5eCLwTncF1jgwvgcFhAHrGZiAFCUEIds9mYxWGcRK-n7Mz7Lec8TbWaMbVuduhKbPrgfd9ZR23dVfYr8L0bqB-c9QE2eYDVm80clhTQ4HbWn7OTAitvL37mnL3c3jyv7sPN0916tdyEJAXIMEl0kSIIUmCLMYm0iHSOOkOyeQ4SICtI6wyiXNqEFBGhopxGO9VAkZyzq-lu59qPwfrebNvBNeNLA1rzSEoZi5FaTBS51ntnC9O5ska3N4KbQx3m0I357WYU0kn4LCu7_4c2D8vH5Z_7DbGyaLw</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Bielawski, Roger</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202301</creationdate><title>Invariant hypercomplex structures and algebraic curves</title><author>Bielawski, Roger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3123-887f9a21c62ef31247147da7bacedd2322bfc77b24d3e8c6ccca6cdcc31972c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adjoint orbits</topic><topic>Algebra</topic><topic>algebraic curves</topic><topic>Hilbert schemes of morphisms</topic><topic>hypercomplex structures</topic><topic>Invariants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bielawski, Roger</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bielawski, Roger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariant hypercomplex structures and algebraic curves</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2023-01</date><risdate>2023</risdate><volume>296</volume><issue>1</issue><spage>122</spage><epage>129</epage><pages>122-129</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>We show that U(k)$U(k)$‐invariant hypercomplex structures on (open subsets) of regular semisimple adjoint orbits in gl(k,C)${\mathfrak {g} \mathfrak {l}}(k,{\mathbb {C}})$ correspond to algebraic curves C of genus (k−1)2$(k-1)^2$, equipped with a flat projection π:C→P1$\pi :C\rightarrow {\mathbb {P}}^1$ of degree k, and an antiholomorphic involution σ:C→C$\sigma :C\rightarrow C$ covering the antipodal map on P1${\mathbb {P}}^1$.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.202100223</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 2023-01, Vol.296 (1), p.122-129
issn 0025-584X
1522-2616
language eng
recordid cdi_proquest_journals_2770433351
source Wiley Online Library Journals Frontfile Complete
subjects adjoint orbits
Algebra
algebraic curves
Hilbert schemes of morphisms
hypercomplex structures
Invariants
title Invariant hypercomplex structures and algebraic curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariant%20hypercomplex%20structures%20and%20algebraic%20curves&rft.jtitle=Mathematische%20Nachrichten&rft.au=Bielawski,%20Roger&rft.date=2023-01&rft.volume=296&rft.issue=1&rft.spage=122&rft.epage=129&rft.pages=122-129&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.202100223&rft_dat=%3Cproquest_cross%3E2770433351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770433351&rft_id=info:pmid/&rfr_iscdi=true