Invariant hypercomplex structures and algebraic curves
We show that U(k)$U(k)$‐invariant hypercomplex structures on (open subsets) of regular semisimple adjoint orbits in gl(k,C)${\mathfrak {g} \mathfrak {l}}(k,{\mathbb {C}})$ correspond to algebraic curves C of genus (k−1)2$(k-1)^2$, equipped with a flat projection π:C→P1$\pi :C\rightarrow {\mathbb {P}...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2023-01, Vol.296 (1), p.122-129 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that U(k)$U(k)$‐invariant hypercomplex structures on (open subsets) of regular semisimple adjoint orbits in gl(k,C)${\mathfrak {g} \mathfrak {l}}(k,{\mathbb {C}})$ correspond to algebraic curves C of genus (k−1)2$(k-1)^2$, equipped with a flat projection π:C→P1$\pi :C\rightarrow {\mathbb {P}}^1$ of degree k, and an antiholomorphic involution σ:C→C$\sigma :C\rightarrow C$ covering the antipodal map on P1${\mathbb {P}}^1$. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.202100223 |