Arbitrary Public Announcement Logic with Memory
We introduce Arbitrary Public Announcement Logic with Memory (APALM), obtained by adding to the models a ‘memory’ of the initial states, representing the information before any communication took place (“the prior”), and adding to the syntax operators that can access this memory. We show that APALM...
Gespeichert in:
Veröffentlicht in: | Journal of philosophical logic 2023-02, Vol.52 (1), p.53-110 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | 1 |
container_start_page | 53 |
container_title | Journal of philosophical logic |
container_volume | 52 |
creator | Baltag, Alexandru Özgün, Aybüke Sandoval, Ana Lucia Vargas |
description | We introduce Arbitrary Public Announcement Logic with Memory (APALM), obtained by adding to the models a ‘memory’ of the initial states, representing the information before any communication took place (“the prior”), and adding to the syntax operators that can access this memory. We show that APALM is recursively axiomatizable (in contrast to the original Arbitrary Public Announcement Logic, for which the corresponding question is still open). We present a complete recursive axiomatization, that includes a natural finitary rule, and study this logic’s expressivity and the appropriate notion of bisimulation. We then examine Group Announcement Logic with Memory (GALM), the extension of APALM obtained by adding to its syntax group announcement operators, and provide a complete finitary axiomatization (again in contrast to the original Group Announcement Logic, for which the only known axiomatization is infinitary). We also show that, in the memory-enhanced context, there is a natural reduction of the so-called coalition announcement modality to group announcements (in contrast to the memory-free case, where this natural translation was shown to be invalid). |
doi_str_mv | 10.1007/s10992-022-09664-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2770372303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770372303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-98f95edaf23c680f5086a5f0e633d3696f880769ba7a81b68ca1a3213382f14f3</originalsourceid><addsrcrecordid>eNp9UEtLw0AQXkTBWv0DngKeY2d2kn0cS_EFFT3oedmkuzWlTepugvTfuzWCNw_DwMz34PsYu0a4RQA5iwha8xx4Gi1EkYsTNsFSUg4F0SmbwPFFAvGcXcS4AQCFJCdsNg9V0wcbDtnrUG2bOpu3bTe0tdu5ts-W3Tqdvpr-I3t2uy4cLtmZt9vorn73lL3f370tHvPly8PTYr7Ma8Kiz7XyunQr6znVQoEvQQlbenCCaEVCC68USKErK63CSqjaoiWORIp7LDxN2c2ouw_d5-BibzbdENpkabiUQJITUELxEVWHLsbgvNmHZpfCGARzLMaMxZiU3vwUY0Qi0UiKCdyuXfiT_of1DfsIZA4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770372303</pqid></control><display><type>article</type><title>Arbitrary Public Announcement Logic with Memory</title><source>SpringerNature Journals</source><creator>Baltag, Alexandru ; Özgün, Aybüke ; Sandoval, Ana Lucia Vargas</creator><creatorcontrib>Baltag, Alexandru ; Özgün, Aybüke ; Sandoval, Ana Lucia Vargas</creatorcontrib><description>We introduce Arbitrary Public Announcement Logic with Memory (APALM), obtained by adding to the models a ‘memory’ of the initial states, representing the information before any communication took place (“the prior”), and adding to the syntax operators that can access this memory. We show that APALM is recursively axiomatizable (in contrast to the original Arbitrary Public Announcement Logic, for which the corresponding question is still open). We present a complete recursive axiomatization, that includes a natural finitary rule, and study this logic’s expressivity and the appropriate notion of bisimulation. We then examine Group Announcement Logic with Memory (GALM), the extension of APALM obtained by adding to its syntax group announcement operators, and provide a complete finitary axiomatization (again in contrast to the original Group Announcement Logic, for which the only known axiomatization is infinitary). We also show that, in the memory-enhanced context, there is a natural reduction of the so-called coalition announcement modality to group announcements (in contrast to the memory-free case, where this natural translation was shown to be invalid).</description><identifier>ISSN: 0022-3611</identifier><identifier>EISSN: 1573-0433</identifier><identifier>DOI: 10.1007/s10992-022-09664-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Education ; Epistemology ; Logic ; Memory ; Philosophy ; Recursion ; Semantics ; Syntax</subject><ispartof>Journal of philosophical logic, 2023-02, Vol.52 (1), p.53-110</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-98f95edaf23c680f5086a5f0e633d3696f880769ba7a81b68ca1a3213382f14f3</cites><orcidid>0000-0002-4643-2023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10992-022-09664-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10992-022-09664-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Baltag, Alexandru</creatorcontrib><creatorcontrib>Özgün, Aybüke</creatorcontrib><creatorcontrib>Sandoval, Ana Lucia Vargas</creatorcontrib><title>Arbitrary Public Announcement Logic with Memory</title><title>Journal of philosophical logic</title><addtitle>J Philos Logic</addtitle><description>We introduce Arbitrary Public Announcement Logic with Memory (APALM), obtained by adding to the models a ‘memory’ of the initial states, representing the information before any communication took place (“the prior”), and adding to the syntax operators that can access this memory. We show that APALM is recursively axiomatizable (in contrast to the original Arbitrary Public Announcement Logic, for which the corresponding question is still open). We present a complete recursive axiomatization, that includes a natural finitary rule, and study this logic’s expressivity and the appropriate notion of bisimulation. We then examine Group Announcement Logic with Memory (GALM), the extension of APALM obtained by adding to its syntax group announcement operators, and provide a complete finitary axiomatization (again in contrast to the original Group Announcement Logic, for which the only known axiomatization is infinitary). We also show that, in the memory-enhanced context, there is a natural reduction of the so-called coalition announcement modality to group announcements (in contrast to the memory-free case, where this natural translation was shown to be invalid).</description><subject>Education</subject><subject>Epistemology</subject><subject>Logic</subject><subject>Memory</subject><subject>Philosophy</subject><subject>Recursion</subject><subject>Semantics</subject><subject>Syntax</subject><issn>0022-3611</issn><issn>1573-0433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AIMQZ</sourceid><sourceid>AVQMV</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>K50</sourceid><sourceid>M1D</sourceid><sourceid>M2O</sourceid><recordid>eNp9UEtLw0AQXkTBWv0DngKeY2d2kn0cS_EFFT3oedmkuzWlTepugvTfuzWCNw_DwMz34PsYu0a4RQA5iwha8xx4Gi1EkYsTNsFSUg4F0SmbwPFFAvGcXcS4AQCFJCdsNg9V0wcbDtnrUG2bOpu3bTe0tdu5ts-W3Tqdvpr-I3t2uy4cLtmZt9vorn73lL3f370tHvPly8PTYr7Ma8Kiz7XyunQr6znVQoEvQQlbenCCaEVCC68USKErK63CSqjaoiWORIp7LDxN2c2ouw_d5-BibzbdENpkabiUQJITUELxEVWHLsbgvNmHZpfCGARzLMaMxZiU3vwUY0Qi0UiKCdyuXfiT_of1DfsIZA4</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Baltag, Alexandru</creator><creator>Özgün, Aybüke</creator><creator>Sandoval, Ana Lucia Vargas</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GB0</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K50</scope><scope>LIQON</scope><scope>M1D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4643-2023</orcidid></search><sort><creationdate>20230201</creationdate><title>Arbitrary Public Announcement Logic with Memory</title><author>Baltag, Alexandru ; Özgün, Aybüke ; Sandoval, Ana Lucia Vargas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-98f95edaf23c680f5086a5f0e633d3696f880769ba7a81b68ca1a3213382f14f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Education</topic><topic>Epistemology</topic><topic>Logic</topic><topic>Memory</topic><topic>Philosophy</topic><topic>Recursion</topic><topic>Semantics</topic><topic>Syntax</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baltag, Alexandru</creatorcontrib><creatorcontrib>Özgün, Aybüke</creatorcontrib><creatorcontrib>Sandoval, Ana Lucia Vargas</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>DELNET Social Sciences & Humanities Collection</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Art, Design & Architecture Collection</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Arts & Humanities Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of philosophical logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baltag, Alexandru</au><au>Özgün, Aybüke</au><au>Sandoval, Ana Lucia Vargas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arbitrary Public Announcement Logic with Memory</atitle><jtitle>Journal of philosophical logic</jtitle><stitle>J Philos Logic</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>52</volume><issue>1</issue><spage>53</spage><epage>110</epage><pages>53-110</pages><issn>0022-3611</issn><eissn>1573-0433</eissn><abstract>We introduce Arbitrary Public Announcement Logic with Memory (APALM), obtained by adding to the models a ‘memory’ of the initial states, representing the information before any communication took place (“the prior”), and adding to the syntax operators that can access this memory. We show that APALM is recursively axiomatizable (in contrast to the original Arbitrary Public Announcement Logic, for which the corresponding question is still open). We present a complete recursive axiomatization, that includes a natural finitary rule, and study this logic’s expressivity and the appropriate notion of bisimulation. We then examine Group Announcement Logic with Memory (GALM), the extension of APALM obtained by adding to its syntax group announcement operators, and provide a complete finitary axiomatization (again in contrast to the original Group Announcement Logic, for which the only known axiomatization is infinitary). We also show that, in the memory-enhanced context, there is a natural reduction of the so-called coalition announcement modality to group announcements (in contrast to the memory-free case, where this natural translation was shown to be invalid).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10992-022-09664-6</doi><tpages>58</tpages><orcidid>https://orcid.org/0000-0002-4643-2023</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3611 |
ispartof | Journal of philosophical logic, 2023-02, Vol.52 (1), p.53-110 |
issn | 0022-3611 1573-0433 |
language | eng |
recordid | cdi_proquest_journals_2770372303 |
source | SpringerNature Journals |
subjects | Education Epistemology Logic Memory Philosophy Recursion Semantics Syntax |
title | Arbitrary Public Announcement Logic with Memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A14%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arbitrary%20Public%20Announcement%20Logic%20with%20Memory&rft.jtitle=Journal%20of%20philosophical%20logic&rft.au=Baltag,%20Alexandru&rft.date=2023-02-01&rft.volume=52&rft.issue=1&rft.spage=53&rft.epage=110&rft.pages=53-110&rft.issn=0022-3611&rft.eissn=1573-0433&rft_id=info:doi/10.1007/s10992-022-09664-6&rft_dat=%3Cproquest_cross%3E2770372303%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770372303&rft_id=info:pmid/&rfr_iscdi=true |