Arbitrary Public Announcement Logic with Memory

We introduce Arbitrary Public Announcement Logic with Memory (APALM), obtained by adding to the models a ‘memory’ of the initial states, representing the information before any communication took place (“the prior”), and adding to the syntax operators that can access this memory. We show that APALM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of philosophical logic 2023-02, Vol.52 (1), p.53-110
Hauptverfasser: Baltag, Alexandru, Özgün, Aybüke, Sandoval, Ana Lucia Vargas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue 1
container_start_page 53
container_title Journal of philosophical logic
container_volume 52
creator Baltag, Alexandru
Özgün, Aybüke
Sandoval, Ana Lucia Vargas
description We introduce Arbitrary Public Announcement Logic with Memory (APALM), obtained by adding to the models a ‘memory’ of the initial states, representing the information before any communication took place (“the prior”), and adding to the syntax operators that can access this memory. We show that APALM is recursively axiomatizable (in contrast to the original Arbitrary Public Announcement Logic, for which the corresponding question is still open). We present a complete recursive axiomatization, that includes a natural finitary rule, and study this logic’s expressivity and the appropriate notion of bisimulation. We then examine Group Announcement Logic with Memory (GALM), the extension of APALM obtained by adding to its syntax group announcement operators, and provide a complete finitary axiomatization (again in contrast to the original Group Announcement Logic, for which the only known axiomatization is infinitary). We also show that, in the memory-enhanced context, there is a natural reduction of the so-called coalition announcement modality to group announcements (in contrast to the memory-free case, where this natural translation was shown to be invalid).
doi_str_mv 10.1007/s10992-022-09664-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2770372303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770372303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-98f95edaf23c680f5086a5f0e633d3696f880769ba7a81b68ca1a3213382f14f3</originalsourceid><addsrcrecordid>eNp9UEtLw0AQXkTBWv0DngKeY2d2kn0cS_EFFT3oedmkuzWlTepugvTfuzWCNw_DwMz34PsYu0a4RQA5iwha8xx4Gi1EkYsTNsFSUg4F0SmbwPFFAvGcXcS4AQCFJCdsNg9V0wcbDtnrUG2bOpu3bTe0tdu5ts-W3Tqdvpr-I3t2uy4cLtmZt9vorn73lL3f370tHvPly8PTYr7Ma8Kiz7XyunQr6znVQoEvQQlbenCCaEVCC68USKErK63CSqjaoiWORIp7LDxN2c2ouw_d5-BibzbdENpkabiUQJITUELxEVWHLsbgvNmHZpfCGARzLMaMxZiU3vwUY0Qi0UiKCdyuXfiT_of1DfsIZA4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770372303</pqid></control><display><type>article</type><title>Arbitrary Public Announcement Logic with Memory</title><source>SpringerNature Journals</source><creator>Baltag, Alexandru ; Özgün, Aybüke ; Sandoval, Ana Lucia Vargas</creator><creatorcontrib>Baltag, Alexandru ; Özgün, Aybüke ; Sandoval, Ana Lucia Vargas</creatorcontrib><description>We introduce Arbitrary Public Announcement Logic with Memory (APALM), obtained by adding to the models a ‘memory’ of the initial states, representing the information before any communication took place (“the prior”), and adding to the syntax operators that can access this memory. We show that APALM is recursively axiomatizable (in contrast to the original Arbitrary Public Announcement Logic, for which the corresponding question is still open). We present a complete recursive axiomatization, that includes a natural finitary rule, and study this logic’s expressivity and the appropriate notion of bisimulation. We then examine Group Announcement Logic with Memory (GALM), the extension of APALM obtained by adding to its syntax group announcement operators, and provide a complete finitary axiomatization (again in contrast to the original Group Announcement Logic, for which the only known axiomatization is infinitary). We also show that, in the memory-enhanced context, there is a natural reduction of the so-called coalition announcement modality to group announcements (in contrast to the memory-free case, where this natural translation was shown to be invalid).</description><identifier>ISSN: 0022-3611</identifier><identifier>EISSN: 1573-0433</identifier><identifier>DOI: 10.1007/s10992-022-09664-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Education ; Epistemology ; Logic ; Memory ; Philosophy ; Recursion ; Semantics ; Syntax</subject><ispartof>Journal of philosophical logic, 2023-02, Vol.52 (1), p.53-110</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-98f95edaf23c680f5086a5f0e633d3696f880769ba7a81b68ca1a3213382f14f3</cites><orcidid>0000-0002-4643-2023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10992-022-09664-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10992-022-09664-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Baltag, Alexandru</creatorcontrib><creatorcontrib>Özgün, Aybüke</creatorcontrib><creatorcontrib>Sandoval, Ana Lucia Vargas</creatorcontrib><title>Arbitrary Public Announcement Logic with Memory</title><title>Journal of philosophical logic</title><addtitle>J Philos Logic</addtitle><description>We introduce Arbitrary Public Announcement Logic with Memory (APALM), obtained by adding to the models a ‘memory’ of the initial states, representing the information before any communication took place (“the prior”), and adding to the syntax operators that can access this memory. We show that APALM is recursively axiomatizable (in contrast to the original Arbitrary Public Announcement Logic, for which the corresponding question is still open). We present a complete recursive axiomatization, that includes a natural finitary rule, and study this logic’s expressivity and the appropriate notion of bisimulation. We then examine Group Announcement Logic with Memory (GALM), the extension of APALM obtained by adding to its syntax group announcement operators, and provide a complete finitary axiomatization (again in contrast to the original Group Announcement Logic, for which the only known axiomatization is infinitary). We also show that, in the memory-enhanced context, there is a natural reduction of the so-called coalition announcement modality to group announcements (in contrast to the memory-free case, where this natural translation was shown to be invalid).</description><subject>Education</subject><subject>Epistemology</subject><subject>Logic</subject><subject>Memory</subject><subject>Philosophy</subject><subject>Recursion</subject><subject>Semantics</subject><subject>Syntax</subject><issn>0022-3611</issn><issn>1573-0433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AIMQZ</sourceid><sourceid>AVQMV</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>K50</sourceid><sourceid>M1D</sourceid><sourceid>M2O</sourceid><recordid>eNp9UEtLw0AQXkTBWv0DngKeY2d2kn0cS_EFFT3oedmkuzWlTepugvTfuzWCNw_DwMz34PsYu0a4RQA5iwha8xx4Gi1EkYsTNsFSUg4F0SmbwPFFAvGcXcS4AQCFJCdsNg9V0wcbDtnrUG2bOpu3bTe0tdu5ts-W3Tqdvpr-I3t2uy4cLtmZt9vorn73lL3f370tHvPly8PTYr7Ma8Kiz7XyunQr6znVQoEvQQlbenCCaEVCC68USKErK63CSqjaoiWORIp7LDxN2c2ouw_d5-BibzbdENpkabiUQJITUELxEVWHLsbgvNmHZpfCGARzLMaMxZiU3vwUY0Qi0UiKCdyuXfiT_of1DfsIZA4</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Baltag, Alexandru</creator><creator>Özgün, Aybüke</creator><creator>Sandoval, Ana Lucia Vargas</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GB0</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K50</scope><scope>LIQON</scope><scope>M1D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4643-2023</orcidid></search><sort><creationdate>20230201</creationdate><title>Arbitrary Public Announcement Logic with Memory</title><author>Baltag, Alexandru ; Özgün, Aybüke ; Sandoval, Ana Lucia Vargas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-98f95edaf23c680f5086a5f0e633d3696f880769ba7a81b68ca1a3213382f14f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Education</topic><topic>Epistemology</topic><topic>Logic</topic><topic>Memory</topic><topic>Philosophy</topic><topic>Recursion</topic><topic>Semantics</topic><topic>Syntax</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baltag, Alexandru</creatorcontrib><creatorcontrib>Özgün, Aybüke</creatorcontrib><creatorcontrib>Sandoval, Ana Lucia Vargas</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>DELNET Social Sciences &amp; Humanities Collection</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Art, Design &amp; Architecture Collection</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Arts &amp; Humanities Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of philosophical logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baltag, Alexandru</au><au>Özgün, Aybüke</au><au>Sandoval, Ana Lucia Vargas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arbitrary Public Announcement Logic with Memory</atitle><jtitle>Journal of philosophical logic</jtitle><stitle>J Philos Logic</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>52</volume><issue>1</issue><spage>53</spage><epage>110</epage><pages>53-110</pages><issn>0022-3611</issn><eissn>1573-0433</eissn><abstract>We introduce Arbitrary Public Announcement Logic with Memory (APALM), obtained by adding to the models a ‘memory’ of the initial states, representing the information before any communication took place (“the prior”), and adding to the syntax operators that can access this memory. We show that APALM is recursively axiomatizable (in contrast to the original Arbitrary Public Announcement Logic, for which the corresponding question is still open). We present a complete recursive axiomatization, that includes a natural finitary rule, and study this logic’s expressivity and the appropriate notion of bisimulation. We then examine Group Announcement Logic with Memory (GALM), the extension of APALM obtained by adding to its syntax group announcement operators, and provide a complete finitary axiomatization (again in contrast to the original Group Announcement Logic, for which the only known axiomatization is infinitary). We also show that, in the memory-enhanced context, there is a natural reduction of the so-called coalition announcement modality to group announcements (in contrast to the memory-free case, where this natural translation was shown to be invalid).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10992-022-09664-6</doi><tpages>58</tpages><orcidid>https://orcid.org/0000-0002-4643-2023</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3611
ispartof Journal of philosophical logic, 2023-02, Vol.52 (1), p.53-110
issn 0022-3611
1573-0433
language eng
recordid cdi_proquest_journals_2770372303
source SpringerNature Journals
subjects Education
Epistemology
Logic
Memory
Philosophy
Recursion
Semantics
Syntax
title Arbitrary Public Announcement Logic with Memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A14%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arbitrary%20Public%20Announcement%20Logic%20with%20Memory&rft.jtitle=Journal%20of%20philosophical%20logic&rft.au=Baltag,%20Alexandru&rft.date=2023-02-01&rft.volume=52&rft.issue=1&rft.spage=53&rft.epage=110&rft.pages=53-110&rft.issn=0022-3611&rft.eissn=1573-0433&rft_id=info:doi/10.1007/s10992-022-09664-6&rft_dat=%3Cproquest_cross%3E2770372303%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770372303&rft_id=info:pmid/&rfr_iscdi=true