Improving abstractive summarization of legal rulings through textual entailment

The standard approach for abstractive text summarization is to use an encoder-decoder architecture. The encoder is responsible for capturing the general meaning from the source text, and the decoder is in charge of generating the final text summary. While this approach can compose summaries that res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence and law 2023-03, Vol.31 (1), p.91-113
Hauptverfasser: Feijo, Diego de Vargas, Moreira, Viviane P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue 1
container_start_page 91
container_title Artificial intelligence and law
container_volume 31
creator Feijo, Diego de Vargas
Moreira, Viviane P.
description The standard approach for abstractive text summarization is to use an encoder-decoder architecture. The encoder is responsible for capturing the general meaning from the source text, and the decoder is in charge of generating the final text summary. While this approach can compose summaries that resemble human writing, some may contain unrelated or unfaithful information. This problem is called “hallucination” and it represents a serious issue in legal texts as legal practitioners rely on these summaries when looking for precedents, used to support legal arguments. Another concern is that legal documents tend to be very long and may not be fed entirely to the encoder. We propose our method called LegalSumm for addressing these issues by creating different “views” over the source text, training summarization models to generate independent versions of summaries, and applying entailment module to judge how faithful these candidate summaries are with respect to the source text. We show that the proposed approach can select candidate summaries that improve ROUGE scores in all metrics evaluated.
doi_str_mv 10.1007/s10506-021-09305-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2770371348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A735114209</galeid><sourcerecordid>A735114209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-d6f86e8bba98821ee9d8bbfc848738ca54468f24d61b88692a7b14ad058315153</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhoMoOKd_wKuC15n5apJejuHHYLAbvQ5pm3YZbTOTdKi_3swJQxDJxSGH98l5c14AbjGaYYTEfcAoRxwigiEqKMohOwMTnAsCJZXkHExQQRiUjNNLcBXCFiFU8IJOwHrZ77zb26HNdBmi11W0e5OFse-1t586Wjdkrsk60-ou82OXlCGLG-_GdpNF8x7H1DdD1LbrU7kGF43ugrn5qVPw-vjwsniGq_XTcjFfwYpKHmHNG8mNLEtdSEmwMUWdLk0lmRRUVjpnjMuGsJrjUkpeEC1KzHSNcklxjnM6BXfHd5P7t9GEqLZu9EMaqYgQiApMmTypknmj7NC4ww97Gyo1FzTHmJG0rimY_aFKpza9rdxgGpv6vwByBCrvQvCmUTtv074-FEbqkIc65qFSHuo7D8USRI9QSOKhNf7k-B_qCwpLjNM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770371348</pqid></control><display><type>article</type><title>Improving abstractive summarization of legal rulings through textual entailment</title><source>HeinOnline Law Journal Library</source><source>SpringerLink Journals - AutoHoldings</source><creator>Feijo, Diego de Vargas ; Moreira, Viviane P.</creator><creatorcontrib>Feijo, Diego de Vargas ; Moreira, Viviane P.</creatorcontrib><description>The standard approach for abstractive text summarization is to use an encoder-decoder architecture. The encoder is responsible for capturing the general meaning from the source text, and the decoder is in charge of generating the final text summary. While this approach can compose summaries that resemble human writing, some may contain unrelated or unfaithful information. This problem is called “hallucination” and it represents a serious issue in legal texts as legal practitioners rely on these summaries when looking for precedents, used to support legal arguments. Another concern is that legal documents tend to be very long and may not be fed entirely to the encoder. We propose our method called LegalSumm for addressing these issues by creating different “views” over the source text, training summarization models to generate independent versions of summaries, and applying entailment module to judge how faithful these candidate summaries are with respect to the source text. We show that the proposed approach can select candidate summaries that improve ROUGE scores in all metrics evaluated.</description><identifier>ISSN: 0924-8463</identifier><identifier>EISSN: 1572-8382</identifier><identifier>DOI: 10.1007/s10506-021-09305-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Abstracting ; Artificial Intelligence ; Coders ; Computer Science ; Criticism, Textual ; Encoders-Decoders ; Information Storage and Retrieval ; Intellectual Property ; IT Law ; Judgments ; Legal Aspects of Computing ; Legal documents ; Media Law ; Methods ; Original Research ; Philosophy of Law ; Summaries</subject><ispartof>Artificial intelligence and law, 2023-03, Vol.31 (1), p.91-113</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-d6f86e8bba98821ee9d8bbfc848738ca54468f24d61b88692a7b14ad058315153</citedby><cites>FETCH-LOGICAL-c386t-d6f86e8bba98821ee9d8bbfc848738ca54468f24d61b88692a7b14ad058315153</cites><orcidid>0000-0003-1249-9913 ; 0000-0003-4400-054X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10506-021-09305-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10506-021-09305-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Feijo, Diego de Vargas</creatorcontrib><creatorcontrib>Moreira, Viviane P.</creatorcontrib><title>Improving abstractive summarization of legal rulings through textual entailment</title><title>Artificial intelligence and law</title><addtitle>Artif Intell Law</addtitle><description>The standard approach for abstractive text summarization is to use an encoder-decoder architecture. The encoder is responsible for capturing the general meaning from the source text, and the decoder is in charge of generating the final text summary. While this approach can compose summaries that resemble human writing, some may contain unrelated or unfaithful information. This problem is called “hallucination” and it represents a serious issue in legal texts as legal practitioners rely on these summaries when looking for precedents, used to support legal arguments. Another concern is that legal documents tend to be very long and may not be fed entirely to the encoder. We propose our method called LegalSumm for addressing these issues by creating different “views” over the source text, training summarization models to generate independent versions of summaries, and applying entailment module to judge how faithful these candidate summaries are with respect to the source text. We show that the proposed approach can select candidate summaries that improve ROUGE scores in all metrics evaluated.</description><subject>Abstracting</subject><subject>Artificial Intelligence</subject><subject>Coders</subject><subject>Computer Science</subject><subject>Criticism, Textual</subject><subject>Encoders-Decoders</subject><subject>Information Storage and Retrieval</subject><subject>Intellectual Property</subject><subject>IT Law</subject><subject>Judgments</subject><subject>Legal Aspects of Computing</subject><subject>Legal documents</subject><subject>Media Law</subject><subject>Methods</subject><subject>Original Research</subject><subject>Philosophy of Law</subject><subject>Summaries</subject><issn>0924-8463</issn><issn>1572-8382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kV1LwzAUhoMoOKd_wKuC15n5apJejuHHYLAbvQ5pm3YZbTOTdKi_3swJQxDJxSGH98l5c14AbjGaYYTEfcAoRxwigiEqKMohOwMTnAsCJZXkHExQQRiUjNNLcBXCFiFU8IJOwHrZ77zb26HNdBmi11W0e5OFse-1t586Wjdkrsk60-ou82OXlCGLG-_GdpNF8x7H1DdD1LbrU7kGF43ugrn5qVPw-vjwsniGq_XTcjFfwYpKHmHNG8mNLEtdSEmwMUWdLk0lmRRUVjpnjMuGsJrjUkpeEC1KzHSNcklxjnM6BXfHd5P7t9GEqLZu9EMaqYgQiApMmTypknmj7NC4ww97Gyo1FzTHmJG0rimY_aFKpza9rdxgGpv6vwByBCrvQvCmUTtv074-FEbqkIc65qFSHuo7D8USRI9QSOKhNf7k-B_qCwpLjNM</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Feijo, Diego de Vargas</creator><creator>Moreira, Viviane P.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ILT</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M1O</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1249-9913</orcidid><orcidid>https://orcid.org/0000-0003-4400-054X</orcidid></search><sort><creationdate>20230301</creationdate><title>Improving abstractive summarization of legal rulings through textual entailment</title><author>Feijo, Diego de Vargas ; Moreira, Viviane P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-d6f86e8bba98821ee9d8bbfc848738ca54468f24d61b88692a7b14ad058315153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abstracting</topic><topic>Artificial Intelligence</topic><topic>Coders</topic><topic>Computer Science</topic><topic>Criticism, Textual</topic><topic>Encoders-Decoders</topic><topic>Information Storage and Retrieval</topic><topic>Intellectual Property</topic><topic>IT Law</topic><topic>Judgments</topic><topic>Legal Aspects of Computing</topic><topic>Legal documents</topic><topic>Media Law</topic><topic>Methods</topic><topic>Original Research</topic><topic>Philosophy of Law</topic><topic>Summaries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feijo, Diego de Vargas</creatorcontrib><creatorcontrib>Moreira, Viviane P.</creatorcontrib><collection>CrossRef</collection><collection>Gale OneFile: LegalTrac</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Artificial intelligence and law</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feijo, Diego de Vargas</au><au>Moreira, Viviane P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving abstractive summarization of legal rulings through textual entailment</atitle><jtitle>Artificial intelligence and law</jtitle><stitle>Artif Intell Law</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>31</volume><issue>1</issue><spage>91</spage><epage>113</epage><pages>91-113</pages><issn>0924-8463</issn><eissn>1572-8382</eissn><abstract>The standard approach for abstractive text summarization is to use an encoder-decoder architecture. The encoder is responsible for capturing the general meaning from the source text, and the decoder is in charge of generating the final text summary. While this approach can compose summaries that resemble human writing, some may contain unrelated or unfaithful information. This problem is called “hallucination” and it represents a serious issue in legal texts as legal practitioners rely on these summaries when looking for precedents, used to support legal arguments. Another concern is that legal documents tend to be very long and may not be fed entirely to the encoder. We propose our method called LegalSumm for addressing these issues by creating different “views” over the source text, training summarization models to generate independent versions of summaries, and applying entailment module to judge how faithful these candidate summaries are with respect to the source text. We show that the proposed approach can select candidate summaries that improve ROUGE scores in all metrics evaluated.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10506-021-09305-4</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-1249-9913</orcidid><orcidid>https://orcid.org/0000-0003-4400-054X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-8463
ispartof Artificial intelligence and law, 2023-03, Vol.31 (1), p.91-113
issn 0924-8463
1572-8382
language eng
recordid cdi_proquest_journals_2770371348
source HeinOnline Law Journal Library; SpringerLink Journals - AutoHoldings
subjects Abstracting
Artificial Intelligence
Coders
Computer Science
Criticism, Textual
Encoders-Decoders
Information Storage and Retrieval
Intellectual Property
IT Law
Judgments
Legal Aspects of Computing
Legal documents
Media Law
Methods
Original Research
Philosophy of Law
Summaries
title Improving abstractive summarization of legal rulings through textual entailment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20abstractive%20summarization%20of%20legal%20rulings%20through%20textual%20entailment&rft.jtitle=Artificial%20intelligence%20and%20law&rft.au=Feijo,%20Diego%20de%20Vargas&rft.date=2023-03-01&rft.volume=31&rft.issue=1&rft.spage=91&rft.epage=113&rft.pages=91-113&rft.issn=0924-8463&rft.eissn=1572-8382&rft_id=info:doi/10.1007/s10506-021-09305-4&rft_dat=%3Cgale_proqu%3EA735114209%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770371348&rft_id=info:pmid/&rft_galeid=A735114209&rfr_iscdi=true