SYNCA: A Synthetic Cyclotron Antenna for the Project 8 Collaboration

Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for measuring the kinetic energy of charged particles through a precision measurement of the frequency of the cyclotron radiation generated by the particle's motion in a magnetic field. The Project 8 collaboration is developing a n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of instrumentation 2023-01, Vol.18 (1), p.P01034
Hauptverfasser: Ashtari Esfahani, A., Böser, S., Buzinsky, N., Carmona-Benitez, M.C., Claessens, C., de Viveiros, L., Fertl, M., Formaggio, J.A., Gladstone, L., Grando, M., Hartse, J., Heeger, K.M., Huyan, X., Jones, A.M., Kazkaz, K., Li, M., Lindman, A., Matthé, C., Mohiuddin, R., Monreal, B., Mueller, R., Nikkel, J.A., Novitski, E., Oblath, N.S., Peña, J.I., Pettus, W., Reimann, R., Robertson, R.G.H., Saldaña, L., Slocum, P.L., Stachurska, J., Sun, Y.-H., Surukuchi, P.T., Telles, A.B., Thomas, F., Thomas, M., Thorne, L.A., Thümmler, T., Tvrznikova, L., Van De Pontseele, W., VanDevender, B.A., Weiss, T.E., Wendler, T., Zayas, E., Ziegler, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page P01034
container_title Journal of instrumentation
container_volume 18
creator Ashtari Esfahani, A.
Böser, S.
Buzinsky, N.
Carmona-Benitez, M.C.
Claessens, C.
de Viveiros, L.
Fertl, M.
Formaggio, J.A.
Gladstone, L.
Grando, M.
Hartse, J.
Heeger, K.M.
Huyan, X.
Jones, A.M.
Kazkaz, K.
Li, M.
Lindman, A.
Matthé, C.
Mohiuddin, R.
Monreal, B.
Mueller, R.
Nikkel, J.A.
Novitski, E.
Oblath, N.S.
Peña, J.I.
Pettus, W.
Reimann, R.
Robertson, R.G.H.
Saldaña, L.
Slocum, P.L.
Stachurska, J.
Sun, Y.-H.
Surukuchi, P.T.
Telles, A.B.
Thomas, F.
Thomas, M.
Thorne, L.A.
Thümmler, T.
Tvrznikova, L.
Van De Pontseele, W.
VanDevender, B.A.
Weiss, T.E.
Wendler, T.
Zayas, E.
Ziegler, A.
description Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for measuring the kinetic energy of charged particles through a precision measurement of the frequency of the cyclotron radiation generated by the particle's motion in a magnetic field. The Project 8 collaboration is developing a next-generation neutrino mass measurement experiment based on CRES. One approach is to use a phased antenna array, which surrounds a volume of tritium gas, to detect and measure the cyclotron radiation of the resulting β-decay electrons. To validate the feasibility of this method, Project 8 has designed a test stand to benchmark the performance of an antenna array at reconstructing signals that mimic those of genuine CRES events. To generate synthetic CRES events, a novel probe antenna has been developed, which emits radiation with characteristics similar to the cyclotron radiation produced by charged particles in magnetic fields. This paper outlines the design, construction, and characterization of this Synthetic Cyclotron Antenna (SYNCA). Furthermore, we perform a series of measurements that use the SYNCA to test the position reconstruction capabilities of the digital beamforming reconstruction technique. We find that the SYNCA produces radiation with characteristics closely matching those expected for cyclotron radiation and reproduces experimentally the phenomenology of digital beamforming simulations of true CRES signals.
doi_str_mv 10.1088/1748-0221/18/01/P01034
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2770349961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770349961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-538329b11c95022c8c665ce7a9d4046dec1b391a70c5e9cea671c857f0cba1803</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYsoOD7-ggRd1-a2TZu4K_UJgw6MLlyF9E7KdKjJmGYW8-9Nqag7V-fCPedw-KLoAug1UM4TKHMe0zSFBHhCIVlQoFl-EM1-Hod_7uPoZBg2lDLBcjqLbpfvz3V1Qyqy3Bu_1r5DUu-xt95ZQyrjtTGKtNaR8CQLZzcaPeGktn2vGuuU76w5i45a1Q_6_FtPo7f7u9f6MZ6_PDzV1TzGnIKPWcazVDQAKFiYghyLgqEulVjlNC9WGqHJBKiSItMCtSpKQM7KlmKjgNPsNLqceu3gOzlg5zWu0RoTNkkQjJcAwXQ1mbbOfu704OXG7pwJu2RaloGMEMXoKiYXOjsMTrdy67oP5fYSqByxypGYHIlJCApywhqC6RTs7Pa3-Z_QF_bFdro</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770349961</pqid></control><display><type>article</type><title>SYNCA: A Synthetic Cyclotron Antenna for the Project 8 Collaboration</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ashtari Esfahani, A. ; Böser, S. ; Buzinsky, N. ; Carmona-Benitez, M.C. ; Claessens, C. ; de Viveiros, L. ; Fertl, M. ; Formaggio, J.A. ; Gladstone, L. ; Grando, M. ; Hartse, J. ; Heeger, K.M. ; Huyan, X. ; Jones, A.M. ; Kazkaz, K. ; Li, M. ; Lindman, A. ; Matthé, C. ; Mohiuddin, R. ; Monreal, B. ; Mueller, R. ; Nikkel, J.A. ; Novitski, E. ; Oblath, N.S. ; Peña, J.I. ; Pettus, W. ; Reimann, R. ; Robertson, R.G.H. ; Saldaña, L. ; Slocum, P.L. ; Stachurska, J. ; Sun, Y.-H. ; Surukuchi, P.T. ; Telles, A.B. ; Thomas, F. ; Thomas, M. ; Thorne, L.A. ; Thümmler, T. ; Tvrznikova, L. ; Van De Pontseele, W. ; VanDevender, B.A. ; Weiss, T.E. ; Wendler, T. ; Zayas, E. ; Ziegler, A.</creator><creatorcontrib>Ashtari Esfahani, A. ; Böser, S. ; Buzinsky, N. ; Carmona-Benitez, M.C. ; Claessens, C. ; de Viveiros, L. ; Fertl, M. ; Formaggio, J.A. ; Gladstone, L. ; Grando, M. ; Hartse, J. ; Heeger, K.M. ; Huyan, X. ; Jones, A.M. ; Kazkaz, K. ; Li, M. ; Lindman, A. ; Matthé, C. ; Mohiuddin, R. ; Monreal, B. ; Mueller, R. ; Nikkel, J.A. ; Novitski, E. ; Oblath, N.S. ; Peña, J.I. ; Pettus, W. ; Reimann, R. ; Robertson, R.G.H. ; Saldaña, L. ; Slocum, P.L. ; Stachurska, J. ; Sun, Y.-H. ; Surukuchi, P.T. ; Telles, A.B. ; Thomas, F. ; Thomas, M. ; Thorne, L.A. ; Thümmler, T. ; Tvrznikova, L. ; Van De Pontseele, W. ; VanDevender, B.A. ; Weiss, T.E. ; Wendler, T. ; Zayas, E. ; Ziegler, A. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for measuring the kinetic energy of charged particles through a precision measurement of the frequency of the cyclotron radiation generated by the particle's motion in a magnetic field. The Project 8 collaboration is developing a next-generation neutrino mass measurement experiment based on CRES. One approach is to use a phased antenna array, which surrounds a volume of tritium gas, to detect and measure the cyclotron radiation of the resulting β-decay electrons. To validate the feasibility of this method, Project 8 has designed a test stand to benchmark the performance of an antenna array at reconstructing signals that mimic those of genuine CRES events. To generate synthetic CRES events, a novel probe antenna has been developed, which emits radiation with characteristics similar to the cyclotron radiation produced by charged particles in magnetic fields. This paper outlines the design, construction, and characterization of this Synthetic Cyclotron Antenna (SYNCA). Furthermore, we perform a series of measurements that use the SYNCA to test the position reconstruction capabilities of the digital beamforming reconstruction technique. We find that the SYNCA produces radiation with characteristics closely matching those expected for cyclotron radiation and reproduces experimentally the phenomenology of digital beamforming simulations of true CRES signals.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/18/01/P01034</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Antenna arrays ; Antennas ; ATOMIC AND MOLECULAR PHYSICS ; Beamforming ; Collaboration ; Cyclotron radiation ; Cyclotrons ; Detector alignment and calibration methods (lasers, sources, particle-beams) ; Kinetic energy ; Microwave Antennas ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; OTHER INSTRUMENTATION ; Phenomenology ; Project feasibility ; Radiation ; Spectrometers ; Test stands</subject><ispartof>Journal of instrumentation, 2023-01, Vol.18 (1), p.P01034</ispartof><rights>2023 IOP Publishing Ltd and Sissa Medialab</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-538329b11c95022c8c665ce7a9d4046dec1b391a70c5e9cea671c857f0cba1803</citedby><cites>FETCH-LOGICAL-c401t-538329b11c95022c8c665ce7a9d4046dec1b391a70c5e9cea671c857f0cba1803</cites><orcidid>0000-0002-0373-8225 ; 0000-0001-8103-7670 ; 0000-0002-0238-5608 ; 0000-0002-4782-8126 ; 0000-0003-3422-3133 ; 0000-0003-4154-2271 ; 0000-0002-4988-8763 ; 0000-0002-2444-7857 ; 0000-0003-4142-5956 ; 0000-0002-5540-1288 ; 0000-0001-7052-2785 ; 0000-0002-1028-8939 ; 0000-0002-5326-331X ; 0000-0002-3757-9883 ; 0000-0002-7038-2361 ; 0000-0002-3470-7771 ; 0000-0002-6025-602X ; 0000-0003-4295-9570 ; 0000-0002-4815-6499 ; 0000-0003-4947-7400 ; 0000-0002-4027-3746 ; 0000-0002-1983-8271 ; 0000-0002-4623-7543 ; 0000-0002-5918-4890 ; 0000-0002-7858-0370 ; 0000-0002-0322-7089 ; 0000-0002-0394-7692 ; 0000-0002-2398-7085 ; 0000-0002-2592-2787 ; 0000-0002-3600-587X ; 0000-0002-9485-3949 ; 0000-0002-1925-2553 ; 0000-0002-7896-9925 ; 0000-0002-3796-0086 ; 0000-0001-9409-7023 ; 0000000234707771 ; 0000000342959570 ; 0000000181037670 ; 0000000341542271 ; 0000000270382361 ; 000000025326331X ; 0000000278969925 ; 0000000219252553 ; 0000000247828126 ; 0000000210288939 ; 000000026025602X ; 0000000225922787 ; 0000000194097023 ; 0000000203947692 ; 0000000248156499 ; 0000000237579883 ; 0000000349477400 ; 0000000255401288 ; 0000000249888763 ; 0000000203227089 ; 0000000219838271 ; 0000000341425956 ; 0000000240273746 ; 0000000202385608 ; 0000000224447857 ; 0000000294853949 ; 0000000334223133 ; 0000000259184890 ; 0000000237960086 ; 0000000246237543 ; 0000000223987085 ; 0000000203738225 ; 0000000278580370 ; 0000000170522785 ; 000000023600587X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-0221/18/01/P01034/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1958711$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ashtari Esfahani, A.</creatorcontrib><creatorcontrib>Böser, S.</creatorcontrib><creatorcontrib>Buzinsky, N.</creatorcontrib><creatorcontrib>Carmona-Benitez, M.C.</creatorcontrib><creatorcontrib>Claessens, C.</creatorcontrib><creatorcontrib>de Viveiros, L.</creatorcontrib><creatorcontrib>Fertl, M.</creatorcontrib><creatorcontrib>Formaggio, J.A.</creatorcontrib><creatorcontrib>Gladstone, L.</creatorcontrib><creatorcontrib>Grando, M.</creatorcontrib><creatorcontrib>Hartse, J.</creatorcontrib><creatorcontrib>Heeger, K.M.</creatorcontrib><creatorcontrib>Huyan, X.</creatorcontrib><creatorcontrib>Jones, A.M.</creatorcontrib><creatorcontrib>Kazkaz, K.</creatorcontrib><creatorcontrib>Li, M.</creatorcontrib><creatorcontrib>Lindman, A.</creatorcontrib><creatorcontrib>Matthé, C.</creatorcontrib><creatorcontrib>Mohiuddin, R.</creatorcontrib><creatorcontrib>Monreal, B.</creatorcontrib><creatorcontrib>Mueller, R.</creatorcontrib><creatorcontrib>Nikkel, J.A.</creatorcontrib><creatorcontrib>Novitski, E.</creatorcontrib><creatorcontrib>Oblath, N.S.</creatorcontrib><creatorcontrib>Peña, J.I.</creatorcontrib><creatorcontrib>Pettus, W.</creatorcontrib><creatorcontrib>Reimann, R.</creatorcontrib><creatorcontrib>Robertson, R.G.H.</creatorcontrib><creatorcontrib>Saldaña, L.</creatorcontrib><creatorcontrib>Slocum, P.L.</creatorcontrib><creatorcontrib>Stachurska, J.</creatorcontrib><creatorcontrib>Sun, Y.-H.</creatorcontrib><creatorcontrib>Surukuchi, P.T.</creatorcontrib><creatorcontrib>Telles, A.B.</creatorcontrib><creatorcontrib>Thomas, F.</creatorcontrib><creatorcontrib>Thomas, M.</creatorcontrib><creatorcontrib>Thorne, L.A.</creatorcontrib><creatorcontrib>Thümmler, T.</creatorcontrib><creatorcontrib>Tvrznikova, L.</creatorcontrib><creatorcontrib>Van De Pontseele, W.</creatorcontrib><creatorcontrib>VanDevender, B.A.</creatorcontrib><creatorcontrib>Weiss, T.E.</creatorcontrib><creatorcontrib>Wendler, T.</creatorcontrib><creatorcontrib>Zayas, E.</creatorcontrib><creatorcontrib>Ziegler, A.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>SYNCA: A Synthetic Cyclotron Antenna for the Project 8 Collaboration</title><title>Journal of instrumentation</title><addtitle>J. Instrum</addtitle><description>Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for measuring the kinetic energy of charged particles through a precision measurement of the frequency of the cyclotron radiation generated by the particle's motion in a magnetic field. The Project 8 collaboration is developing a next-generation neutrino mass measurement experiment based on CRES. One approach is to use a phased antenna array, which surrounds a volume of tritium gas, to detect and measure the cyclotron radiation of the resulting β-decay electrons. To validate the feasibility of this method, Project 8 has designed a test stand to benchmark the performance of an antenna array at reconstructing signals that mimic those of genuine CRES events. To generate synthetic CRES events, a novel probe antenna has been developed, which emits radiation with characteristics similar to the cyclotron radiation produced by charged particles in magnetic fields. This paper outlines the design, construction, and characterization of this Synthetic Cyclotron Antenna (SYNCA). Furthermore, we perform a series of measurements that use the SYNCA to test the position reconstruction capabilities of the digital beamforming reconstruction technique. We find that the SYNCA produces radiation with characteristics closely matching those expected for cyclotron radiation and reproduces experimentally the phenomenology of digital beamforming simulations of true CRES signals.</description><subject>Antenna arrays</subject><subject>Antennas</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>Beamforming</subject><subject>Collaboration</subject><subject>Cyclotron radiation</subject><subject>Cyclotrons</subject><subject>Detector alignment and calibration methods (lasers, sources, particle-beams)</subject><subject>Kinetic energy</subject><subject>Microwave Antennas</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>OTHER INSTRUMENTATION</subject><subject>Phenomenology</subject><subject>Project feasibility</subject><subject>Radiation</subject><subject>Spectrometers</subject><subject>Test stands</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYsoOD7-ggRd1-a2TZu4K_UJgw6MLlyF9E7KdKjJmGYW8-9Nqag7V-fCPedw-KLoAug1UM4TKHMe0zSFBHhCIVlQoFl-EM1-Hod_7uPoZBg2lDLBcjqLbpfvz3V1Qyqy3Bu_1r5DUu-xt95ZQyrjtTGKtNaR8CQLZzcaPeGktn2vGuuU76w5i45a1Q_6_FtPo7f7u9f6MZ6_PDzV1TzGnIKPWcazVDQAKFiYghyLgqEulVjlNC9WGqHJBKiSItMCtSpKQM7KlmKjgNPsNLqceu3gOzlg5zWu0RoTNkkQjJcAwXQ1mbbOfu704OXG7pwJu2RaloGMEMXoKiYXOjsMTrdy67oP5fYSqByxypGYHIlJCApywhqC6RTs7Pa3-Z_QF_bFdro</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Ashtari Esfahani, A.</creator><creator>Böser, S.</creator><creator>Buzinsky, N.</creator><creator>Carmona-Benitez, M.C.</creator><creator>Claessens, C.</creator><creator>de Viveiros, L.</creator><creator>Fertl, M.</creator><creator>Formaggio, J.A.</creator><creator>Gladstone, L.</creator><creator>Grando, M.</creator><creator>Hartse, J.</creator><creator>Heeger, K.M.</creator><creator>Huyan, X.</creator><creator>Jones, A.M.</creator><creator>Kazkaz, K.</creator><creator>Li, M.</creator><creator>Lindman, A.</creator><creator>Matthé, C.</creator><creator>Mohiuddin, R.</creator><creator>Monreal, B.</creator><creator>Mueller, R.</creator><creator>Nikkel, J.A.</creator><creator>Novitski, E.</creator><creator>Oblath, N.S.</creator><creator>Peña, J.I.</creator><creator>Pettus, W.</creator><creator>Reimann, R.</creator><creator>Robertson, R.G.H.</creator><creator>Saldaña, L.</creator><creator>Slocum, P.L.</creator><creator>Stachurska, J.</creator><creator>Sun, Y.-H.</creator><creator>Surukuchi, P.T.</creator><creator>Telles, A.B.</creator><creator>Thomas, F.</creator><creator>Thomas, M.</creator><creator>Thorne, L.A.</creator><creator>Thümmler, T.</creator><creator>Tvrznikova, L.</creator><creator>Van De Pontseele, W.</creator><creator>VanDevender, B.A.</creator><creator>Weiss, T.E.</creator><creator>Wendler, T.</creator><creator>Zayas, E.</creator><creator>Ziegler, A.</creator><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0373-8225</orcidid><orcidid>https://orcid.org/0000-0001-8103-7670</orcidid><orcidid>https://orcid.org/0000-0002-0238-5608</orcidid><orcidid>https://orcid.org/0000-0002-4782-8126</orcidid><orcidid>https://orcid.org/0000-0003-3422-3133</orcidid><orcidid>https://orcid.org/0000-0003-4154-2271</orcidid><orcidid>https://orcid.org/0000-0002-4988-8763</orcidid><orcidid>https://orcid.org/0000-0002-2444-7857</orcidid><orcidid>https://orcid.org/0000-0003-4142-5956</orcidid><orcidid>https://orcid.org/0000-0002-5540-1288</orcidid><orcidid>https://orcid.org/0000-0001-7052-2785</orcidid><orcidid>https://orcid.org/0000-0002-1028-8939</orcidid><orcidid>https://orcid.org/0000-0002-5326-331X</orcidid><orcidid>https://orcid.org/0000-0002-3757-9883</orcidid><orcidid>https://orcid.org/0000-0002-7038-2361</orcidid><orcidid>https://orcid.org/0000-0002-3470-7771</orcidid><orcidid>https://orcid.org/0000-0002-6025-602X</orcidid><orcidid>https://orcid.org/0000-0003-4295-9570</orcidid><orcidid>https://orcid.org/0000-0002-4815-6499</orcidid><orcidid>https://orcid.org/0000-0003-4947-7400</orcidid><orcidid>https://orcid.org/0000-0002-4027-3746</orcidid><orcidid>https://orcid.org/0000-0002-1983-8271</orcidid><orcidid>https://orcid.org/0000-0002-4623-7543</orcidid><orcidid>https://orcid.org/0000-0002-5918-4890</orcidid><orcidid>https://orcid.org/0000-0002-7858-0370</orcidid><orcidid>https://orcid.org/0000-0002-0322-7089</orcidid><orcidid>https://orcid.org/0000-0002-0394-7692</orcidid><orcidid>https://orcid.org/0000-0002-2398-7085</orcidid><orcidid>https://orcid.org/0000-0002-2592-2787</orcidid><orcidid>https://orcid.org/0000-0002-3600-587X</orcidid><orcidid>https://orcid.org/0000-0002-9485-3949</orcidid><orcidid>https://orcid.org/0000-0002-1925-2553</orcidid><orcidid>https://orcid.org/0000-0002-7896-9925</orcidid><orcidid>https://orcid.org/0000-0002-3796-0086</orcidid><orcidid>https://orcid.org/0000-0001-9409-7023</orcidid><orcidid>https://orcid.org/0000000234707771</orcidid><orcidid>https://orcid.org/0000000342959570</orcidid><orcidid>https://orcid.org/0000000181037670</orcidid><orcidid>https://orcid.org/0000000341542271</orcidid><orcidid>https://orcid.org/0000000270382361</orcidid><orcidid>https://orcid.org/000000025326331X</orcidid><orcidid>https://orcid.org/0000000278969925</orcidid><orcidid>https://orcid.org/0000000219252553</orcidid><orcidid>https://orcid.org/0000000247828126</orcidid><orcidid>https://orcid.org/0000000210288939</orcidid><orcidid>https://orcid.org/000000026025602X</orcidid><orcidid>https://orcid.org/0000000225922787</orcidid><orcidid>https://orcid.org/0000000194097023</orcidid><orcidid>https://orcid.org/0000000203947692</orcidid><orcidid>https://orcid.org/0000000248156499</orcidid><orcidid>https://orcid.org/0000000237579883</orcidid><orcidid>https://orcid.org/0000000349477400</orcidid><orcidid>https://orcid.org/0000000255401288</orcidid><orcidid>https://orcid.org/0000000249888763</orcidid><orcidid>https://orcid.org/0000000203227089</orcidid><orcidid>https://orcid.org/0000000219838271</orcidid><orcidid>https://orcid.org/0000000341425956</orcidid><orcidid>https://orcid.org/0000000240273746</orcidid><orcidid>https://orcid.org/0000000202385608</orcidid><orcidid>https://orcid.org/0000000224447857</orcidid><orcidid>https://orcid.org/0000000294853949</orcidid><orcidid>https://orcid.org/0000000334223133</orcidid><orcidid>https://orcid.org/0000000259184890</orcidid><orcidid>https://orcid.org/0000000237960086</orcidid><orcidid>https://orcid.org/0000000246237543</orcidid><orcidid>https://orcid.org/0000000223987085</orcidid><orcidid>https://orcid.org/0000000203738225</orcidid><orcidid>https://orcid.org/0000000278580370</orcidid><orcidid>https://orcid.org/0000000170522785</orcidid><orcidid>https://orcid.org/000000023600587X</orcidid></search><sort><creationdate>20230101</creationdate><title>SYNCA: A Synthetic Cyclotron Antenna for the Project 8 Collaboration</title><author>Ashtari Esfahani, A. ; Böser, S. ; Buzinsky, N. ; Carmona-Benitez, M.C. ; Claessens, C. ; de Viveiros, L. ; Fertl, M. ; Formaggio, J.A. ; Gladstone, L. ; Grando, M. ; Hartse, J. ; Heeger, K.M. ; Huyan, X. ; Jones, A.M. ; Kazkaz, K. ; Li, M. ; Lindman, A. ; Matthé, C. ; Mohiuddin, R. ; Monreal, B. ; Mueller, R. ; Nikkel, J.A. ; Novitski, E. ; Oblath, N.S. ; Peña, J.I. ; Pettus, W. ; Reimann, R. ; Robertson, R.G.H. ; Saldaña, L. ; Slocum, P.L. ; Stachurska, J. ; Sun, Y.-H. ; Surukuchi, P.T. ; Telles, A.B. ; Thomas, F. ; Thomas, M. ; Thorne, L.A. ; Thümmler, T. ; Tvrznikova, L. ; Van De Pontseele, W. ; VanDevender, B.A. ; Weiss, T.E. ; Wendler, T. ; Zayas, E. ; Ziegler, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-538329b11c95022c8c665ce7a9d4046dec1b391a70c5e9cea671c857f0cba1803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antenna arrays</topic><topic>Antennas</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>Beamforming</topic><topic>Collaboration</topic><topic>Cyclotron radiation</topic><topic>Cyclotrons</topic><topic>Detector alignment and calibration methods (lasers, sources, particle-beams)</topic><topic>Kinetic energy</topic><topic>Microwave Antennas</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>OTHER INSTRUMENTATION</topic><topic>Phenomenology</topic><topic>Project feasibility</topic><topic>Radiation</topic><topic>Spectrometers</topic><topic>Test stands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashtari Esfahani, A.</creatorcontrib><creatorcontrib>Böser, S.</creatorcontrib><creatorcontrib>Buzinsky, N.</creatorcontrib><creatorcontrib>Carmona-Benitez, M.C.</creatorcontrib><creatorcontrib>Claessens, C.</creatorcontrib><creatorcontrib>de Viveiros, L.</creatorcontrib><creatorcontrib>Fertl, M.</creatorcontrib><creatorcontrib>Formaggio, J.A.</creatorcontrib><creatorcontrib>Gladstone, L.</creatorcontrib><creatorcontrib>Grando, M.</creatorcontrib><creatorcontrib>Hartse, J.</creatorcontrib><creatorcontrib>Heeger, K.M.</creatorcontrib><creatorcontrib>Huyan, X.</creatorcontrib><creatorcontrib>Jones, A.M.</creatorcontrib><creatorcontrib>Kazkaz, K.</creatorcontrib><creatorcontrib>Li, M.</creatorcontrib><creatorcontrib>Lindman, A.</creatorcontrib><creatorcontrib>Matthé, C.</creatorcontrib><creatorcontrib>Mohiuddin, R.</creatorcontrib><creatorcontrib>Monreal, B.</creatorcontrib><creatorcontrib>Mueller, R.</creatorcontrib><creatorcontrib>Nikkel, J.A.</creatorcontrib><creatorcontrib>Novitski, E.</creatorcontrib><creatorcontrib>Oblath, N.S.</creatorcontrib><creatorcontrib>Peña, J.I.</creatorcontrib><creatorcontrib>Pettus, W.</creatorcontrib><creatorcontrib>Reimann, R.</creatorcontrib><creatorcontrib>Robertson, R.G.H.</creatorcontrib><creatorcontrib>Saldaña, L.</creatorcontrib><creatorcontrib>Slocum, P.L.</creatorcontrib><creatorcontrib>Stachurska, J.</creatorcontrib><creatorcontrib>Sun, Y.-H.</creatorcontrib><creatorcontrib>Surukuchi, P.T.</creatorcontrib><creatorcontrib>Telles, A.B.</creatorcontrib><creatorcontrib>Thomas, F.</creatorcontrib><creatorcontrib>Thomas, M.</creatorcontrib><creatorcontrib>Thorne, L.A.</creatorcontrib><creatorcontrib>Thümmler, T.</creatorcontrib><creatorcontrib>Tvrznikova, L.</creatorcontrib><creatorcontrib>Van De Pontseele, W.</creatorcontrib><creatorcontrib>VanDevender, B.A.</creatorcontrib><creatorcontrib>Weiss, T.E.</creatorcontrib><creatorcontrib>Wendler, T.</creatorcontrib><creatorcontrib>Zayas, E.</creatorcontrib><creatorcontrib>Ziegler, A.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashtari Esfahani, A.</au><au>Böser, S.</au><au>Buzinsky, N.</au><au>Carmona-Benitez, M.C.</au><au>Claessens, C.</au><au>de Viveiros, L.</au><au>Fertl, M.</au><au>Formaggio, J.A.</au><au>Gladstone, L.</au><au>Grando, M.</au><au>Hartse, J.</au><au>Heeger, K.M.</au><au>Huyan, X.</au><au>Jones, A.M.</au><au>Kazkaz, K.</au><au>Li, M.</au><au>Lindman, A.</au><au>Matthé, C.</au><au>Mohiuddin, R.</au><au>Monreal, B.</au><au>Mueller, R.</au><au>Nikkel, J.A.</au><au>Novitski, E.</au><au>Oblath, N.S.</au><au>Peña, J.I.</au><au>Pettus, W.</au><au>Reimann, R.</au><au>Robertson, R.G.H.</au><au>Saldaña, L.</au><au>Slocum, P.L.</au><au>Stachurska, J.</au><au>Sun, Y.-H.</au><au>Surukuchi, P.T.</au><au>Telles, A.B.</au><au>Thomas, F.</au><au>Thomas, M.</au><au>Thorne, L.A.</au><au>Thümmler, T.</au><au>Tvrznikova, L.</au><au>Van De Pontseele, W.</au><au>VanDevender, B.A.</au><au>Weiss, T.E.</au><au>Wendler, T.</au><au>Zayas, E.</au><au>Ziegler, A.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SYNCA: A Synthetic Cyclotron Antenna for the Project 8 Collaboration</atitle><jtitle>Journal of instrumentation</jtitle><addtitle>J. Instrum</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>18</volume><issue>1</issue><spage>P01034</spage><pages>P01034-</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for measuring the kinetic energy of charged particles through a precision measurement of the frequency of the cyclotron radiation generated by the particle's motion in a magnetic field. The Project 8 collaboration is developing a next-generation neutrino mass measurement experiment based on CRES. One approach is to use a phased antenna array, which surrounds a volume of tritium gas, to detect and measure the cyclotron radiation of the resulting β-decay electrons. To validate the feasibility of this method, Project 8 has designed a test stand to benchmark the performance of an antenna array at reconstructing signals that mimic those of genuine CRES events. To generate synthetic CRES events, a novel probe antenna has been developed, which emits radiation with characteristics similar to the cyclotron radiation produced by charged particles in magnetic fields. This paper outlines the design, construction, and characterization of this Synthetic Cyclotron Antenna (SYNCA). Furthermore, we perform a series of measurements that use the SYNCA to test the position reconstruction capabilities of the digital beamforming reconstruction technique. We find that the SYNCA produces radiation with characteristics closely matching those expected for cyclotron radiation and reproduces experimentally the phenomenology of digital beamforming simulations of true CRES signals.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/18/01/P01034</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-0373-8225</orcidid><orcidid>https://orcid.org/0000-0001-8103-7670</orcidid><orcidid>https://orcid.org/0000-0002-0238-5608</orcidid><orcidid>https://orcid.org/0000-0002-4782-8126</orcidid><orcidid>https://orcid.org/0000-0003-3422-3133</orcidid><orcidid>https://orcid.org/0000-0003-4154-2271</orcidid><orcidid>https://orcid.org/0000-0002-4988-8763</orcidid><orcidid>https://orcid.org/0000-0002-2444-7857</orcidid><orcidid>https://orcid.org/0000-0003-4142-5956</orcidid><orcidid>https://orcid.org/0000-0002-5540-1288</orcidid><orcidid>https://orcid.org/0000-0001-7052-2785</orcidid><orcidid>https://orcid.org/0000-0002-1028-8939</orcidid><orcidid>https://orcid.org/0000-0002-5326-331X</orcidid><orcidid>https://orcid.org/0000-0002-3757-9883</orcidid><orcidid>https://orcid.org/0000-0002-7038-2361</orcidid><orcidid>https://orcid.org/0000-0002-3470-7771</orcidid><orcidid>https://orcid.org/0000-0002-6025-602X</orcidid><orcidid>https://orcid.org/0000-0003-4295-9570</orcidid><orcidid>https://orcid.org/0000-0002-4815-6499</orcidid><orcidid>https://orcid.org/0000-0003-4947-7400</orcidid><orcidid>https://orcid.org/0000-0002-4027-3746</orcidid><orcidid>https://orcid.org/0000-0002-1983-8271</orcidid><orcidid>https://orcid.org/0000-0002-4623-7543</orcidid><orcidid>https://orcid.org/0000-0002-5918-4890</orcidid><orcidid>https://orcid.org/0000-0002-7858-0370</orcidid><orcidid>https://orcid.org/0000-0002-0322-7089</orcidid><orcidid>https://orcid.org/0000-0002-0394-7692</orcidid><orcidid>https://orcid.org/0000-0002-2398-7085</orcidid><orcidid>https://orcid.org/0000-0002-2592-2787</orcidid><orcidid>https://orcid.org/0000-0002-3600-587X</orcidid><orcidid>https://orcid.org/0000-0002-9485-3949</orcidid><orcidid>https://orcid.org/0000-0002-1925-2553</orcidid><orcidid>https://orcid.org/0000-0002-7896-9925</orcidid><orcidid>https://orcid.org/0000-0002-3796-0086</orcidid><orcidid>https://orcid.org/0000-0001-9409-7023</orcidid><orcidid>https://orcid.org/0000000234707771</orcidid><orcidid>https://orcid.org/0000000342959570</orcidid><orcidid>https://orcid.org/0000000181037670</orcidid><orcidid>https://orcid.org/0000000341542271</orcidid><orcidid>https://orcid.org/0000000270382361</orcidid><orcidid>https://orcid.org/000000025326331X</orcidid><orcidid>https://orcid.org/0000000278969925</orcidid><orcidid>https://orcid.org/0000000219252553</orcidid><orcidid>https://orcid.org/0000000247828126</orcidid><orcidid>https://orcid.org/0000000210288939</orcidid><orcidid>https://orcid.org/000000026025602X</orcidid><orcidid>https://orcid.org/0000000225922787</orcidid><orcidid>https://orcid.org/0000000194097023</orcidid><orcidid>https://orcid.org/0000000203947692</orcidid><orcidid>https://orcid.org/0000000248156499</orcidid><orcidid>https://orcid.org/0000000237579883</orcidid><orcidid>https://orcid.org/0000000349477400</orcidid><orcidid>https://orcid.org/0000000255401288</orcidid><orcidid>https://orcid.org/0000000249888763</orcidid><orcidid>https://orcid.org/0000000203227089</orcidid><orcidid>https://orcid.org/0000000219838271</orcidid><orcidid>https://orcid.org/0000000341425956</orcidid><orcidid>https://orcid.org/0000000240273746</orcidid><orcidid>https://orcid.org/0000000202385608</orcidid><orcidid>https://orcid.org/0000000224447857</orcidid><orcidid>https://orcid.org/0000000294853949</orcidid><orcidid>https://orcid.org/0000000334223133</orcidid><orcidid>https://orcid.org/0000000259184890</orcidid><orcidid>https://orcid.org/0000000237960086</orcidid><orcidid>https://orcid.org/0000000246237543</orcidid><orcidid>https://orcid.org/0000000223987085</orcidid><orcidid>https://orcid.org/0000000203738225</orcidid><orcidid>https://orcid.org/0000000278580370</orcidid><orcidid>https://orcid.org/0000000170522785</orcidid><orcidid>https://orcid.org/000000023600587X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-0221
ispartof Journal of instrumentation, 2023-01, Vol.18 (1), p.P01034
issn 1748-0221
1748-0221
language eng
recordid cdi_proquest_journals_2770349961
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Antenna arrays
Antennas
ATOMIC AND MOLECULAR PHYSICS
Beamforming
Collaboration
Cyclotron radiation
Cyclotrons
Detector alignment and calibration methods (lasers, sources, particle-beams)
Kinetic energy
Microwave Antennas
NUCLEAR PHYSICS AND RADIATION PHYSICS
OTHER INSTRUMENTATION
Phenomenology
Project feasibility
Radiation
Spectrometers
Test stands
title SYNCA: A Synthetic Cyclotron Antenna for the Project 8 Collaboration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SYNCA:%20A%20Synthetic%20Cyclotron%20Antenna%20for%20the%20Project%208%20Collaboration&rft.jtitle=Journal%20of%20instrumentation&rft.au=Ashtari%C2%A0Esfahani,%20A.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2023-01-01&rft.volume=18&rft.issue=1&rft.spage=P01034&rft.pages=P01034-&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/18/01/P01034&rft_dat=%3Cproquest_iop_j%3E2770349961%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770349961&rft_id=info:pmid/&rfr_iscdi=true