Tailoring coercive field in rare earth giant magnetostrictive materials by α-Fe precipitation

Rare earth giant magnetostrictive materials (GMMs) Tb 1− x Dy x Fe 2± δ (Tb–Dy–Fe) have been successfully employed in many microelectromechanical devices due to their excellent magnetostrictive properties at room temperature. However, Tb–Dy–Fe still shows a relatively large coercivity with high hyst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rare metals 2023-02, Vol.42 (2), p.606-613
Hauptverfasser: Zhang, Fang-Xian, Hu, Peng-Qiang, Zhang, Zheng-Ming, Gong, Jian-Hu, Wang, Dun-Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 613
container_issue 2
container_start_page 606
container_title Rare metals
container_volume 42
creator Zhang, Fang-Xian
Hu, Peng-Qiang
Zhang, Zheng-Ming
Gong, Jian-Hu
Wang, Dun-Hui
description Rare earth giant magnetostrictive materials (GMMs) Tb 1− x Dy x Fe 2± δ (Tb–Dy–Fe) have been successfully employed in many microelectromechanical devices due to their excellent magnetostrictive properties at room temperature. However, Tb–Dy–Fe still shows a relatively large coercivity with high hysteresis, which inevitably limits its application range. Herein, micromagnetic simulations are performed to investigate the size effect of precipitated phase (α-Fe) on coercivity in Tb–Dy–Fe. Simulation results demonstrate that the coercivity is reduced from 31.46 to 12.48 mT with increasing the size of α-Fe from 4 to 50 nm in Tb–Dy–Fe since the precipitated phase of α-Fe can act as a magnetization reversal nucleus. This decreasing trend of coercivity can be well fitted with an inverse square relationship, which agrees well with the nucleation theory. Our study highlights that the coercivity of Tb–Dy–Fe can be tailored by tuning the size of α-Fe precipitation. Graphical abstract
doi_str_mv 10.1007/s12598-022-02145-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2770322191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770322191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-a4bd37c62b9ac78dc4503429499817ea2344cf6dc97b77e8511820eedc5eb1973</originalsourceid><addsrcrecordid>eNp9kM1KAzEQx4MoWKsv4CngOZrJZjeboxRrhYKXejVks7M1pd1dk1ToY_kiPpNbV_DmYZiB-X_Aj5Br4LfAubqLIHJdMi7EMCBzJk_IBMpCMQVlfjrcnAPjuYBzchHjhnMpi4JPyOvK-m0XfLumrsPg_AfSxuO2pr6lwQakaEN6o2tv20R3dt1i6mIK3qWjdGcTBm-3kVYH-vXJ5kj7gM73Ptnku_aSnDXDF69-95S8zB9WswVbPj8-ze6XzAmpE7OyqjPlClFp61RZO5nzTAottS5BoRWZlK4paqdVpRSWOUApOGLtcqxAq2xKbsbcPnTve4zJbLp9aIdKI5TimRCgYVCJUeVCF2PAxvTB72w4GODmyNGMHM3A0fxwNHIwZaMp9kdMGP6i_3F9A6MndxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770322191</pqid></control><display><type>article</type><title>Tailoring coercive field in rare earth giant magnetostrictive materials by α-Fe precipitation</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Fang-Xian ; Hu, Peng-Qiang ; Zhang, Zheng-Ming ; Gong, Jian-Hu ; Wang, Dun-Hui</creator><creatorcontrib>Zhang, Fang-Xian ; Hu, Peng-Qiang ; Zhang, Zheng-Ming ; Gong, Jian-Hu ; Wang, Dun-Hui</creatorcontrib><description>Rare earth giant magnetostrictive materials (GMMs) Tb 1− x Dy x Fe 2± δ (Tb–Dy–Fe) have been successfully employed in many microelectromechanical devices due to their excellent magnetostrictive properties at room temperature. However, Tb–Dy–Fe still shows a relatively large coercivity with high hysteresis, which inevitably limits its application range. Herein, micromagnetic simulations are performed to investigate the size effect of precipitated phase (α-Fe) on coercivity in Tb–Dy–Fe. Simulation results demonstrate that the coercivity is reduced from 31.46 to 12.48 mT with increasing the size of α-Fe from 4 to 50 nm in Tb–Dy–Fe since the precipitated phase of α-Fe can act as a magnetization reversal nucleus. This decreasing trend of coercivity can be well fitted with an inverse square relationship, which agrees well with the nucleation theory. Our study highlights that the coercivity of Tb–Dy–Fe can be tailored by tuning the size of α-Fe precipitation. Graphical abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-022-02145-4</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Alpha iron ; Biomaterials ; Chemistry and Materials Science ; Coercivity ; Dysprosium ; Energy ; Magnetic properties ; Magnetization reversal ; Magnetostriction ; Materials Engineering ; Materials Science ; Metallic Materials ; Microelectromechanical systems ; Nanoscale Science and Technology ; Nucleation ; Original Article ; Physical Chemistry ; Room temperature ; Size effects</subject><ispartof>Rare metals, 2023-02, Vol.42 (2), p.606-613</ispartof><rights>Youke Publishing Co.,Ltd 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-a4bd37c62b9ac78dc4503429499817ea2344cf6dc97b77e8511820eedc5eb1973</citedby><cites>FETCH-LOGICAL-c249t-a4bd37c62b9ac78dc4503429499817ea2344cf6dc97b77e8511820eedc5eb1973</cites><orcidid>0000-0002-6043-595X ; 0000-0003-4545-296X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-022-02145-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-022-02145-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, Fang-Xian</creatorcontrib><creatorcontrib>Hu, Peng-Qiang</creatorcontrib><creatorcontrib>Zhang, Zheng-Ming</creatorcontrib><creatorcontrib>Gong, Jian-Hu</creatorcontrib><creatorcontrib>Wang, Dun-Hui</creatorcontrib><title>Tailoring coercive field in rare earth giant magnetostrictive materials by α-Fe precipitation</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>Rare earth giant magnetostrictive materials (GMMs) Tb 1− x Dy x Fe 2± δ (Tb–Dy–Fe) have been successfully employed in many microelectromechanical devices due to their excellent magnetostrictive properties at room temperature. However, Tb–Dy–Fe still shows a relatively large coercivity with high hysteresis, which inevitably limits its application range. Herein, micromagnetic simulations are performed to investigate the size effect of precipitated phase (α-Fe) on coercivity in Tb–Dy–Fe. Simulation results demonstrate that the coercivity is reduced from 31.46 to 12.48 mT with increasing the size of α-Fe from 4 to 50 nm in Tb–Dy–Fe since the precipitated phase of α-Fe can act as a magnetization reversal nucleus. This decreasing trend of coercivity can be well fitted with an inverse square relationship, which agrees well with the nucleation theory. Our study highlights that the coercivity of Tb–Dy–Fe can be tailored by tuning the size of α-Fe precipitation. Graphical abstract</description><subject>Alpha iron</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Coercivity</subject><subject>Dysprosium</subject><subject>Energy</subject><subject>Magnetic properties</subject><subject>Magnetization reversal</subject><subject>Magnetostriction</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microelectromechanical systems</subject><subject>Nanoscale Science and Technology</subject><subject>Nucleation</subject><subject>Original Article</subject><subject>Physical Chemistry</subject><subject>Room temperature</subject><subject>Size effects</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEQx4MoWKsv4CngOZrJZjeboxRrhYKXejVks7M1pd1dk1ToY_kiPpNbV_DmYZiB-X_Aj5Br4LfAubqLIHJdMi7EMCBzJk_IBMpCMQVlfjrcnAPjuYBzchHjhnMpi4JPyOvK-m0XfLumrsPg_AfSxuO2pr6lwQakaEN6o2tv20R3dt1i6mIK3qWjdGcTBm-3kVYH-vXJ5kj7gM73Ptnku_aSnDXDF69-95S8zB9WswVbPj8-ze6XzAmpE7OyqjPlClFp61RZO5nzTAottS5BoRWZlK4paqdVpRSWOUApOGLtcqxAq2xKbsbcPnTve4zJbLp9aIdKI5TimRCgYVCJUeVCF2PAxvTB72w4GODmyNGMHM3A0fxwNHIwZaMp9kdMGP6i_3F9A6MndxA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zhang, Fang-Xian</creator><creator>Hu, Peng-Qiang</creator><creator>Zhang, Zheng-Ming</creator><creator>Gong, Jian-Hu</creator><creator>Wang, Dun-Hui</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6043-595X</orcidid><orcidid>https://orcid.org/0000-0003-4545-296X</orcidid></search><sort><creationdate>20230201</creationdate><title>Tailoring coercive field in rare earth giant magnetostrictive materials by α-Fe precipitation</title><author>Zhang, Fang-Xian ; Hu, Peng-Qiang ; Zhang, Zheng-Ming ; Gong, Jian-Hu ; Wang, Dun-Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-a4bd37c62b9ac78dc4503429499817ea2344cf6dc97b77e8511820eedc5eb1973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alpha iron</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Coercivity</topic><topic>Dysprosium</topic><topic>Energy</topic><topic>Magnetic properties</topic><topic>Magnetization reversal</topic><topic>Magnetostriction</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microelectromechanical systems</topic><topic>Nanoscale Science and Technology</topic><topic>Nucleation</topic><topic>Original Article</topic><topic>Physical Chemistry</topic><topic>Room temperature</topic><topic>Size effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fang-Xian</creatorcontrib><creatorcontrib>Hu, Peng-Qiang</creatorcontrib><creatorcontrib>Zhang, Zheng-Ming</creatorcontrib><creatorcontrib>Gong, Jian-Hu</creatorcontrib><creatorcontrib>Wang, Dun-Hui</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fang-Xian</au><au>Hu, Peng-Qiang</au><au>Zhang, Zheng-Ming</au><au>Gong, Jian-Hu</au><au>Wang, Dun-Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring coercive field in rare earth giant magnetostrictive materials by α-Fe precipitation</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>42</volume><issue>2</issue><spage>606</spage><epage>613</epage><pages>606-613</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>Rare earth giant magnetostrictive materials (GMMs) Tb 1− x Dy x Fe 2± δ (Tb–Dy–Fe) have been successfully employed in many microelectromechanical devices due to their excellent magnetostrictive properties at room temperature. However, Tb–Dy–Fe still shows a relatively large coercivity with high hysteresis, which inevitably limits its application range. Herein, micromagnetic simulations are performed to investigate the size effect of precipitated phase (α-Fe) on coercivity in Tb–Dy–Fe. Simulation results demonstrate that the coercivity is reduced from 31.46 to 12.48 mT with increasing the size of α-Fe from 4 to 50 nm in Tb–Dy–Fe since the precipitated phase of α-Fe can act as a magnetization reversal nucleus. This decreasing trend of coercivity can be well fitted with an inverse square relationship, which agrees well with the nucleation theory. Our study highlights that the coercivity of Tb–Dy–Fe can be tailored by tuning the size of α-Fe precipitation. Graphical abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-022-02145-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6043-595X</orcidid><orcidid>https://orcid.org/0000-0003-4545-296X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2023-02, Vol.42 (2), p.606-613
issn 1001-0521
1867-7185
language eng
recordid cdi_proquest_journals_2770322191
source SpringerNature Journals; Alma/SFX Local Collection
subjects Alpha iron
Biomaterials
Chemistry and Materials Science
Coercivity
Dysprosium
Energy
Magnetic properties
Magnetization reversal
Magnetostriction
Materials Engineering
Materials Science
Metallic Materials
Microelectromechanical systems
Nanoscale Science and Technology
Nucleation
Original Article
Physical Chemistry
Room temperature
Size effects
title Tailoring coercive field in rare earth giant magnetostrictive materials by α-Fe precipitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20coercive%20field%20in%20rare%20earth%20giant%20magnetostrictive%20materials%20by%20%CE%B1-Fe%20precipitation&rft.jtitle=Rare%20metals&rft.au=Zhang,%20Fang-Xian&rft.date=2023-02-01&rft.volume=42&rft.issue=2&rft.spage=606&rft.epage=613&rft.pages=606-613&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-022-02145-4&rft_dat=%3Cproquest_cross%3E2770322191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770322191&rft_id=info:pmid/&rfr_iscdi=true