Tailoring coercive field in rare earth giant magnetostrictive materials by α-Fe precipitation
Rare earth giant magnetostrictive materials (GMMs) Tb 1− x Dy x Fe 2± δ (Tb–Dy–Fe) have been successfully employed in many microelectromechanical devices due to their excellent magnetostrictive properties at room temperature. However, Tb–Dy–Fe still shows a relatively large coercivity with high hyst...
Gespeichert in:
Veröffentlicht in: | Rare metals 2023-02, Vol.42 (2), p.606-613 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 613 |
---|---|
container_issue | 2 |
container_start_page | 606 |
container_title | Rare metals |
container_volume | 42 |
creator | Zhang, Fang-Xian Hu, Peng-Qiang Zhang, Zheng-Ming Gong, Jian-Hu Wang, Dun-Hui |
description | Rare earth giant magnetostrictive materials (GMMs) Tb
1−
x
Dy
x
Fe
2±
δ
(Tb–Dy–Fe) have been successfully employed in many microelectromechanical devices due to their excellent magnetostrictive properties at room temperature. However, Tb–Dy–Fe still shows a relatively large coercivity with high hysteresis, which inevitably limits its application range. Herein, micromagnetic simulations are performed to investigate the size effect of precipitated phase (α-Fe) on coercivity in Tb–Dy–Fe. Simulation results demonstrate that the coercivity is reduced from 31.46 to 12.48 mT with increasing the size of α-Fe from 4 to 50 nm in Tb–Dy–Fe since the precipitated phase of α-Fe can act as a magnetization reversal nucleus. This decreasing trend of coercivity can be well fitted with an inverse square relationship, which agrees well with the nucleation theory. Our study highlights that the coercivity of Tb–Dy–Fe can be tailored by tuning the size of α-Fe precipitation.
Graphical abstract |
doi_str_mv | 10.1007/s12598-022-02145-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2770322191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770322191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-a4bd37c62b9ac78dc4503429499817ea2344cf6dc97b77e8511820eedc5eb1973</originalsourceid><addsrcrecordid>eNp9kM1KAzEQx4MoWKsv4CngOZrJZjeboxRrhYKXejVks7M1pd1dk1ToY_kiPpNbV_DmYZiB-X_Aj5Br4LfAubqLIHJdMi7EMCBzJk_IBMpCMQVlfjrcnAPjuYBzchHjhnMpi4JPyOvK-m0XfLumrsPg_AfSxuO2pr6lwQakaEN6o2tv20R3dt1i6mIK3qWjdGcTBm-3kVYH-vXJ5kj7gM73Ptnku_aSnDXDF69-95S8zB9WswVbPj8-ze6XzAmpE7OyqjPlClFp61RZO5nzTAottS5BoRWZlK4paqdVpRSWOUApOGLtcqxAq2xKbsbcPnTve4zJbLp9aIdKI5TimRCgYVCJUeVCF2PAxvTB72w4GODmyNGMHM3A0fxwNHIwZaMp9kdMGP6i_3F9A6MndxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770322191</pqid></control><display><type>article</type><title>Tailoring coercive field in rare earth giant magnetostrictive materials by α-Fe precipitation</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Fang-Xian ; Hu, Peng-Qiang ; Zhang, Zheng-Ming ; Gong, Jian-Hu ; Wang, Dun-Hui</creator><creatorcontrib>Zhang, Fang-Xian ; Hu, Peng-Qiang ; Zhang, Zheng-Ming ; Gong, Jian-Hu ; Wang, Dun-Hui</creatorcontrib><description>Rare earth giant magnetostrictive materials (GMMs) Tb
1−
x
Dy
x
Fe
2±
δ
(Tb–Dy–Fe) have been successfully employed in many microelectromechanical devices due to their excellent magnetostrictive properties at room temperature. However, Tb–Dy–Fe still shows a relatively large coercivity with high hysteresis, which inevitably limits its application range. Herein, micromagnetic simulations are performed to investigate the size effect of precipitated phase (α-Fe) on coercivity in Tb–Dy–Fe. Simulation results demonstrate that the coercivity is reduced from 31.46 to 12.48 mT with increasing the size of α-Fe from 4 to 50 nm in Tb–Dy–Fe since the precipitated phase of α-Fe can act as a magnetization reversal nucleus. This decreasing trend of coercivity can be well fitted with an inverse square relationship, which agrees well with the nucleation theory. Our study highlights that the coercivity of Tb–Dy–Fe can be tailored by tuning the size of α-Fe precipitation.
Graphical abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-022-02145-4</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Alpha iron ; Biomaterials ; Chemistry and Materials Science ; Coercivity ; Dysprosium ; Energy ; Magnetic properties ; Magnetization reversal ; Magnetostriction ; Materials Engineering ; Materials Science ; Metallic Materials ; Microelectromechanical systems ; Nanoscale Science and Technology ; Nucleation ; Original Article ; Physical Chemistry ; Room temperature ; Size effects</subject><ispartof>Rare metals, 2023-02, Vol.42 (2), p.606-613</ispartof><rights>Youke Publishing Co.,Ltd 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-a4bd37c62b9ac78dc4503429499817ea2344cf6dc97b77e8511820eedc5eb1973</citedby><cites>FETCH-LOGICAL-c249t-a4bd37c62b9ac78dc4503429499817ea2344cf6dc97b77e8511820eedc5eb1973</cites><orcidid>0000-0002-6043-595X ; 0000-0003-4545-296X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-022-02145-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-022-02145-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, Fang-Xian</creatorcontrib><creatorcontrib>Hu, Peng-Qiang</creatorcontrib><creatorcontrib>Zhang, Zheng-Ming</creatorcontrib><creatorcontrib>Gong, Jian-Hu</creatorcontrib><creatorcontrib>Wang, Dun-Hui</creatorcontrib><title>Tailoring coercive field in rare earth giant magnetostrictive materials by α-Fe precipitation</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>Rare earth giant magnetostrictive materials (GMMs) Tb
1−
x
Dy
x
Fe
2±
δ
(Tb–Dy–Fe) have been successfully employed in many microelectromechanical devices due to their excellent magnetostrictive properties at room temperature. However, Tb–Dy–Fe still shows a relatively large coercivity with high hysteresis, which inevitably limits its application range. Herein, micromagnetic simulations are performed to investigate the size effect of precipitated phase (α-Fe) on coercivity in Tb–Dy–Fe. Simulation results demonstrate that the coercivity is reduced from 31.46 to 12.48 mT with increasing the size of α-Fe from 4 to 50 nm in Tb–Dy–Fe since the precipitated phase of α-Fe can act as a magnetization reversal nucleus. This decreasing trend of coercivity can be well fitted with an inverse square relationship, which agrees well with the nucleation theory. Our study highlights that the coercivity of Tb–Dy–Fe can be tailored by tuning the size of α-Fe precipitation.
Graphical abstract</description><subject>Alpha iron</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Coercivity</subject><subject>Dysprosium</subject><subject>Energy</subject><subject>Magnetic properties</subject><subject>Magnetization reversal</subject><subject>Magnetostriction</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microelectromechanical systems</subject><subject>Nanoscale Science and Technology</subject><subject>Nucleation</subject><subject>Original Article</subject><subject>Physical Chemistry</subject><subject>Room temperature</subject><subject>Size effects</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEQx4MoWKsv4CngOZrJZjeboxRrhYKXejVks7M1pd1dk1ToY_kiPpNbV_DmYZiB-X_Aj5Br4LfAubqLIHJdMi7EMCBzJk_IBMpCMQVlfjrcnAPjuYBzchHjhnMpi4JPyOvK-m0XfLumrsPg_AfSxuO2pr6lwQakaEN6o2tv20R3dt1i6mIK3qWjdGcTBm-3kVYH-vXJ5kj7gM73Ptnku_aSnDXDF69-95S8zB9WswVbPj8-ze6XzAmpE7OyqjPlClFp61RZO5nzTAottS5BoRWZlK4paqdVpRSWOUApOGLtcqxAq2xKbsbcPnTve4zJbLp9aIdKI5TimRCgYVCJUeVCF2PAxvTB72w4GODmyNGMHM3A0fxwNHIwZaMp9kdMGP6i_3F9A6MndxA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zhang, Fang-Xian</creator><creator>Hu, Peng-Qiang</creator><creator>Zhang, Zheng-Ming</creator><creator>Gong, Jian-Hu</creator><creator>Wang, Dun-Hui</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6043-595X</orcidid><orcidid>https://orcid.org/0000-0003-4545-296X</orcidid></search><sort><creationdate>20230201</creationdate><title>Tailoring coercive field in rare earth giant magnetostrictive materials by α-Fe precipitation</title><author>Zhang, Fang-Xian ; Hu, Peng-Qiang ; Zhang, Zheng-Ming ; Gong, Jian-Hu ; Wang, Dun-Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-a4bd37c62b9ac78dc4503429499817ea2344cf6dc97b77e8511820eedc5eb1973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alpha iron</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Coercivity</topic><topic>Dysprosium</topic><topic>Energy</topic><topic>Magnetic properties</topic><topic>Magnetization reversal</topic><topic>Magnetostriction</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microelectromechanical systems</topic><topic>Nanoscale Science and Technology</topic><topic>Nucleation</topic><topic>Original Article</topic><topic>Physical Chemistry</topic><topic>Room temperature</topic><topic>Size effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fang-Xian</creatorcontrib><creatorcontrib>Hu, Peng-Qiang</creatorcontrib><creatorcontrib>Zhang, Zheng-Ming</creatorcontrib><creatorcontrib>Gong, Jian-Hu</creatorcontrib><creatorcontrib>Wang, Dun-Hui</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fang-Xian</au><au>Hu, Peng-Qiang</au><au>Zhang, Zheng-Ming</au><au>Gong, Jian-Hu</au><au>Wang, Dun-Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring coercive field in rare earth giant magnetostrictive materials by α-Fe precipitation</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>42</volume><issue>2</issue><spage>606</spage><epage>613</epage><pages>606-613</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>Rare earth giant magnetostrictive materials (GMMs) Tb
1−
x
Dy
x
Fe
2±
δ
(Tb–Dy–Fe) have been successfully employed in many microelectromechanical devices due to their excellent magnetostrictive properties at room temperature. However, Tb–Dy–Fe still shows a relatively large coercivity with high hysteresis, which inevitably limits its application range. Herein, micromagnetic simulations are performed to investigate the size effect of precipitated phase (α-Fe) on coercivity in Tb–Dy–Fe. Simulation results demonstrate that the coercivity is reduced from 31.46 to 12.48 mT with increasing the size of α-Fe from 4 to 50 nm in Tb–Dy–Fe since the precipitated phase of α-Fe can act as a magnetization reversal nucleus. This decreasing trend of coercivity can be well fitted with an inverse square relationship, which agrees well with the nucleation theory. Our study highlights that the coercivity of Tb–Dy–Fe can be tailored by tuning the size of α-Fe precipitation.
Graphical abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-022-02145-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6043-595X</orcidid><orcidid>https://orcid.org/0000-0003-4545-296X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2023-02, Vol.42 (2), p.606-613 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_proquest_journals_2770322191 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Alpha iron Biomaterials Chemistry and Materials Science Coercivity Dysprosium Energy Magnetic properties Magnetization reversal Magnetostriction Materials Engineering Materials Science Metallic Materials Microelectromechanical systems Nanoscale Science and Technology Nucleation Original Article Physical Chemistry Room temperature Size effects |
title | Tailoring coercive field in rare earth giant magnetostrictive materials by α-Fe precipitation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20coercive%20field%20in%20rare%20earth%20giant%20magnetostrictive%20materials%20by%20%CE%B1-Fe%20precipitation&rft.jtitle=Rare%20metals&rft.au=Zhang,%20Fang-Xian&rft.date=2023-02-01&rft.volume=42&rft.issue=2&rft.spage=606&rft.epage=613&rft.pages=606-613&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-022-02145-4&rft_dat=%3Cproquest_cross%3E2770322191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770322191&rft_id=info:pmid/&rfr_iscdi=true |