Text-To-4D Dynamic Scene Generation

We present MAV3D (Make-A-Video3D), a method for generating three-dimensional dynamic scenes from text descriptions. Our approach uses a 4D dynamic Neural Radiance Field (NeRF), which is optimized for scene appearance, density, and motion consistency by querying a Text-to-Video (T2V) diffusion-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-01
Hauptverfasser: Singer, Uriel, Sheynin, Shelly, Polyak, Adam, Oron Ashual, Makarov, Iurii, Kokkinos, Filippos, Goyal, Naman, Vedaldi, Andrea, Parikh, Devi, Johnson, Justin, Taigman, Yaniv
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Singer, Uriel
Sheynin, Shelly
Polyak, Adam
Oron Ashual
Makarov, Iurii
Kokkinos, Filippos
Goyal, Naman
Vedaldi, Andrea
Parikh, Devi
Johnson, Justin
Taigman, Yaniv
description We present MAV3D (Make-A-Video3D), a method for generating three-dimensional dynamic scenes from text descriptions. Our approach uses a 4D dynamic Neural Radiance Field (NeRF), which is optimized for scene appearance, density, and motion consistency by querying a Text-to-Video (T2V) diffusion-based model. The dynamic video output generated from the provided text can be viewed from any camera location and angle, and can be composited into any 3D environment. MAV3D does not require any 3D or 4D data and the T2V model is trained only on Text-Image pairs and unlabeled videos. We demonstrate the effectiveness of our approach using comprehensive quantitative and qualitative experiments and show an improvement over previously established internal baselines. To the best of our knowledge, our method is the first to generate 3D dynamic scenes given a text description.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2770180965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770180965</sourcerecordid><originalsourceid>FETCH-proquest_journals_27701809653</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDkmtKNENydc1cVFwqcxLzM1MVghOTs1LVXAHEkWJJZn5eTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kbm5gaGFgaWZqTJwqACsvLVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770180965</pqid></control><display><type>article</type><title>Text-To-4D Dynamic Scene Generation</title><source>Free E- Journals</source><creator>Singer, Uriel ; Sheynin, Shelly ; Polyak, Adam ; Oron Ashual ; Makarov, Iurii ; Kokkinos, Filippos ; Goyal, Naman ; Vedaldi, Andrea ; Parikh, Devi ; Johnson, Justin ; Taigman, Yaniv</creator><creatorcontrib>Singer, Uriel ; Sheynin, Shelly ; Polyak, Adam ; Oron Ashual ; Makarov, Iurii ; Kokkinos, Filippos ; Goyal, Naman ; Vedaldi, Andrea ; Parikh, Devi ; Johnson, Justin ; Taigman, Yaniv</creatorcontrib><description>We present MAV3D (Make-A-Video3D), a method for generating three-dimensional dynamic scenes from text descriptions. Our approach uses a 4D dynamic Neural Radiance Field (NeRF), which is optimized for scene appearance, density, and motion consistency by querying a Text-to-Video (T2V) diffusion-based model. The dynamic video output generated from the provided text can be viewed from any camera location and angle, and can be composited into any 3D environment. MAV3D does not require any 3D or 4D data and the T2V model is trained only on Text-Image pairs and unlabeled videos. We demonstrate the effectiveness of our approach using comprehensive quantitative and qualitative experiments and show an improvement over previously established internal baselines. To the best of our knowledge, our method is the first to generate 3D dynamic scenes given a text description.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Scene generation ; Three dimensional composites</subject><ispartof>arXiv.org, 2023-01</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Singer, Uriel</creatorcontrib><creatorcontrib>Sheynin, Shelly</creatorcontrib><creatorcontrib>Polyak, Adam</creatorcontrib><creatorcontrib>Oron Ashual</creatorcontrib><creatorcontrib>Makarov, Iurii</creatorcontrib><creatorcontrib>Kokkinos, Filippos</creatorcontrib><creatorcontrib>Goyal, Naman</creatorcontrib><creatorcontrib>Vedaldi, Andrea</creatorcontrib><creatorcontrib>Parikh, Devi</creatorcontrib><creatorcontrib>Johnson, Justin</creatorcontrib><creatorcontrib>Taigman, Yaniv</creatorcontrib><title>Text-To-4D Dynamic Scene Generation</title><title>arXiv.org</title><description>We present MAV3D (Make-A-Video3D), a method for generating three-dimensional dynamic scenes from text descriptions. Our approach uses a 4D dynamic Neural Radiance Field (NeRF), which is optimized for scene appearance, density, and motion consistency by querying a Text-to-Video (T2V) diffusion-based model. The dynamic video output generated from the provided text can be viewed from any camera location and angle, and can be composited into any 3D environment. MAV3D does not require any 3D or 4D data and the T2V model is trained only on Text-Image pairs and unlabeled videos. We demonstrate the effectiveness of our approach using comprehensive quantitative and qualitative experiments and show an improvement over previously established internal baselines. To the best of our knowledge, our method is the first to generate 3D dynamic scenes given a text description.</description><subject>Scene generation</subject><subject>Three dimensional composites</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDkmtKNENydc1cVFwqcxLzM1MVghOTs1LVXAHEkWJJZn5eTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kbm5gaGFgaWZqTJwqACsvLVs</recordid><startdate>20230126</startdate><enddate>20230126</enddate><creator>Singer, Uriel</creator><creator>Sheynin, Shelly</creator><creator>Polyak, Adam</creator><creator>Oron Ashual</creator><creator>Makarov, Iurii</creator><creator>Kokkinos, Filippos</creator><creator>Goyal, Naman</creator><creator>Vedaldi, Andrea</creator><creator>Parikh, Devi</creator><creator>Johnson, Justin</creator><creator>Taigman, Yaniv</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230126</creationdate><title>Text-To-4D Dynamic Scene Generation</title><author>Singer, Uriel ; Sheynin, Shelly ; Polyak, Adam ; Oron Ashual ; Makarov, Iurii ; Kokkinos, Filippos ; Goyal, Naman ; Vedaldi, Andrea ; Parikh, Devi ; Johnson, Justin ; Taigman, Yaniv</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27701809653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Scene generation</topic><topic>Three dimensional composites</topic><toplevel>online_resources</toplevel><creatorcontrib>Singer, Uriel</creatorcontrib><creatorcontrib>Sheynin, Shelly</creatorcontrib><creatorcontrib>Polyak, Adam</creatorcontrib><creatorcontrib>Oron Ashual</creatorcontrib><creatorcontrib>Makarov, Iurii</creatorcontrib><creatorcontrib>Kokkinos, Filippos</creatorcontrib><creatorcontrib>Goyal, Naman</creatorcontrib><creatorcontrib>Vedaldi, Andrea</creatorcontrib><creatorcontrib>Parikh, Devi</creatorcontrib><creatorcontrib>Johnson, Justin</creatorcontrib><creatorcontrib>Taigman, Yaniv</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singer, Uriel</au><au>Sheynin, Shelly</au><au>Polyak, Adam</au><au>Oron Ashual</au><au>Makarov, Iurii</au><au>Kokkinos, Filippos</au><au>Goyal, Naman</au><au>Vedaldi, Andrea</au><au>Parikh, Devi</au><au>Johnson, Justin</au><au>Taigman, Yaniv</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Text-To-4D Dynamic Scene Generation</atitle><jtitle>arXiv.org</jtitle><date>2023-01-26</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We present MAV3D (Make-A-Video3D), a method for generating three-dimensional dynamic scenes from text descriptions. Our approach uses a 4D dynamic Neural Radiance Field (NeRF), which is optimized for scene appearance, density, and motion consistency by querying a Text-to-Video (T2V) diffusion-based model. The dynamic video output generated from the provided text can be viewed from any camera location and angle, and can be composited into any 3D environment. MAV3D does not require any 3D or 4D data and the T2V model is trained only on Text-Image pairs and unlabeled videos. We demonstrate the effectiveness of our approach using comprehensive quantitative and qualitative experiments and show an improvement over previously established internal baselines. To the best of our knowledge, our method is the first to generate 3D dynamic scenes given a text description.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2770180965
source Free E- Journals
subjects Scene generation
Three dimensional composites
title Text-To-4D Dynamic Scene Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Text-To-4D%20Dynamic%20Scene%20Generation&rft.jtitle=arXiv.org&rft.au=Singer,%20Uriel&rft.date=2023-01-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2770180965%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770180965&rft_id=info:pmid/&rfr_iscdi=true