MusicLM: Generating Music From Text
We introduce MusicLM, a model generating high-fidelity music from text descriptions such as "a calming violin melody backed by a distorted guitar riff". MusicLM casts the process of conditional music generation as a hierarchical sequence-to-sequence modeling task, and it generates music at...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-01 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Agostinelli, Andrea Denk, Timo I Borsos, Zalán Engel, Jesse Verzetti, Mauro Caillon, Antoine Huang, Qingqing Jansen, Aren Roberts, Adam Tagliasacchi, Marco Sharifi, Matt Zeghidour, Neil Frank, Christian |
description | We introduce MusicLM, a model generating high-fidelity music from text descriptions such as "a calming violin melody backed by a distorted guitar riff". MusicLM casts the process of conditional music generation as a hierarchical sequence-to-sequence modeling task, and it generates music at 24 kHz that remains consistent over several minutes. Our experiments show that MusicLM outperforms previous systems both in audio quality and adherence to the text description. Moreover, we demonstrate that MusicLM can be conditioned on both text and a melody in that it can transform whistled and hummed melodies according to the style described in a text caption. To support future research, we publicly release MusicCaps, a dataset composed of 5.5k music-text pairs, with rich text descriptions provided by human experts. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2770179214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770179214</sourcerecordid><originalsourceid>FETCH-proquest_journals_27701792143</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9i0tzkz28bVScE_NSy1KLMnMS1cAiym4FeXnKoSkVpTwMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kbm5gaG5pZGhiTFxqgBKUS2K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770179214</pqid></control><display><type>article</type><title>MusicLM: Generating Music From Text</title><source>Free E- Journals</source><creator>Agostinelli, Andrea ; Denk, Timo I ; Borsos, Zalán ; Engel, Jesse ; Verzetti, Mauro ; Caillon, Antoine ; Huang, Qingqing ; Jansen, Aren ; Roberts, Adam ; Tagliasacchi, Marco ; Sharifi, Matt ; Zeghidour, Neil ; Frank, Christian</creator><creatorcontrib>Agostinelli, Andrea ; Denk, Timo I ; Borsos, Zalán ; Engel, Jesse ; Verzetti, Mauro ; Caillon, Antoine ; Huang, Qingqing ; Jansen, Aren ; Roberts, Adam ; Tagliasacchi, Marco ; Sharifi, Matt ; Zeghidour, Neil ; Frank, Christian</creatorcontrib><description>We introduce MusicLM, a model generating high-fidelity music from text descriptions such as "a calming violin melody backed by a distorted guitar riff". MusicLM casts the process of conditional music generation as a hierarchical sequence-to-sequence modeling task, and it generates music at 24 kHz that remains consistent over several minutes. Our experiments show that MusicLM outperforms previous systems both in audio quality and adherence to the text description. Moreover, we demonstrate that MusicLM can be conditioned on both text and a melody in that it can transform whistled and hummed melodies according to the style described in a text caption. To support future research, we publicly release MusicCaps, a dataset composed of 5.5k music-text pairs, with rich text descriptions provided by human experts.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Descriptions ; Music</subject><ispartof>arXiv.org, 2023-01</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Agostinelli, Andrea</creatorcontrib><creatorcontrib>Denk, Timo I</creatorcontrib><creatorcontrib>Borsos, Zalán</creatorcontrib><creatorcontrib>Engel, Jesse</creatorcontrib><creatorcontrib>Verzetti, Mauro</creatorcontrib><creatorcontrib>Caillon, Antoine</creatorcontrib><creatorcontrib>Huang, Qingqing</creatorcontrib><creatorcontrib>Jansen, Aren</creatorcontrib><creatorcontrib>Roberts, Adam</creatorcontrib><creatorcontrib>Tagliasacchi, Marco</creatorcontrib><creatorcontrib>Sharifi, Matt</creatorcontrib><creatorcontrib>Zeghidour, Neil</creatorcontrib><creatorcontrib>Frank, Christian</creatorcontrib><title>MusicLM: Generating Music From Text</title><title>arXiv.org</title><description>We introduce MusicLM, a model generating high-fidelity music from text descriptions such as "a calming violin melody backed by a distorted guitar riff". MusicLM casts the process of conditional music generation as a hierarchical sequence-to-sequence modeling task, and it generates music at 24 kHz that remains consistent over several minutes. Our experiments show that MusicLM outperforms previous systems both in audio quality and adherence to the text description. Moreover, we demonstrate that MusicLM can be conditioned on both text and a melody in that it can transform whistled and hummed melodies according to the style described in a text caption. To support future research, we publicly release MusicCaps, a dataset composed of 5.5k music-text pairs, with rich text descriptions provided by human experts.</description><subject>Descriptions</subject><subject>Music</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9i0tzkz28bVScE_NSy1KLMnMS1cAiym4FeXnKoSkVpTwMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kbm5gaG5pZGhiTFxqgBKUS2K</recordid><startdate>20230126</startdate><enddate>20230126</enddate><creator>Agostinelli, Andrea</creator><creator>Denk, Timo I</creator><creator>Borsos, Zalán</creator><creator>Engel, Jesse</creator><creator>Verzetti, Mauro</creator><creator>Caillon, Antoine</creator><creator>Huang, Qingqing</creator><creator>Jansen, Aren</creator><creator>Roberts, Adam</creator><creator>Tagliasacchi, Marco</creator><creator>Sharifi, Matt</creator><creator>Zeghidour, Neil</creator><creator>Frank, Christian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230126</creationdate><title>MusicLM: Generating Music From Text</title><author>Agostinelli, Andrea ; Denk, Timo I ; Borsos, Zalán ; Engel, Jesse ; Verzetti, Mauro ; Caillon, Antoine ; Huang, Qingqing ; Jansen, Aren ; Roberts, Adam ; Tagliasacchi, Marco ; Sharifi, Matt ; Zeghidour, Neil ; Frank, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27701792143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Descriptions</topic><topic>Music</topic><toplevel>online_resources</toplevel><creatorcontrib>Agostinelli, Andrea</creatorcontrib><creatorcontrib>Denk, Timo I</creatorcontrib><creatorcontrib>Borsos, Zalán</creatorcontrib><creatorcontrib>Engel, Jesse</creatorcontrib><creatorcontrib>Verzetti, Mauro</creatorcontrib><creatorcontrib>Caillon, Antoine</creatorcontrib><creatorcontrib>Huang, Qingqing</creatorcontrib><creatorcontrib>Jansen, Aren</creatorcontrib><creatorcontrib>Roberts, Adam</creatorcontrib><creatorcontrib>Tagliasacchi, Marco</creatorcontrib><creatorcontrib>Sharifi, Matt</creatorcontrib><creatorcontrib>Zeghidour, Neil</creatorcontrib><creatorcontrib>Frank, Christian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agostinelli, Andrea</au><au>Denk, Timo I</au><au>Borsos, Zalán</au><au>Engel, Jesse</au><au>Verzetti, Mauro</au><au>Caillon, Antoine</au><au>Huang, Qingqing</au><au>Jansen, Aren</au><au>Roberts, Adam</au><au>Tagliasacchi, Marco</au><au>Sharifi, Matt</au><au>Zeghidour, Neil</au><au>Frank, Christian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MusicLM: Generating Music From Text</atitle><jtitle>arXiv.org</jtitle><date>2023-01-26</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We introduce MusicLM, a model generating high-fidelity music from text descriptions such as "a calming violin melody backed by a distorted guitar riff". MusicLM casts the process of conditional music generation as a hierarchical sequence-to-sequence modeling task, and it generates music at 24 kHz that remains consistent over several minutes. Our experiments show that MusicLM outperforms previous systems both in audio quality and adherence to the text description. Moreover, we demonstrate that MusicLM can be conditioned on both text and a melody in that it can transform whistled and hummed melodies according to the style described in a text caption. To support future research, we publicly release MusicCaps, a dataset composed of 5.5k music-text pairs, with rich text descriptions provided by human experts.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2770179214 |
source | Free E- Journals |
subjects | Descriptions Music |
title | MusicLM: Generating Music From Text |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MusicLM:%20Generating%20Music%20From%20Text&rft.jtitle=arXiv.org&rft.au=Agostinelli,%20Andrea&rft.date=2023-01-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2770179214%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770179214&rft_id=info:pmid/&rfr_iscdi=true |