Image Quality Specification for Solar Telescopes
Modern large ground-based solar telescopes are invariably equipped with adaptive optics systems to enhance the high angular resolution imaging and spectroscopic capabilities in the presence of Earth’s atmospheric turbulence. The quality of the images obtained from these telescopes cannot be quantifi...
Gespeichert in:
Veröffentlicht in: | Solar physics 2023, Vol.298 (1), p.15, Article 15 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 15 |
container_title | Solar physics |
container_volume | 298 |
creator | Subramanian, Saraswathi Kalyani Rengaswamy, Sridharan |
description | Modern large ground-based solar telescopes are invariably equipped with adaptive optics systems to enhance the high angular resolution imaging and spectroscopic capabilities in the presence of Earth’s atmospheric turbulence. The quality of the images obtained from these telescopes cannot be quantified with the Strehl ratio or other metrics that are used for nighttime astronomical telescopes directly. In this paper, we propose to use the root mean square (rms) granulation contrast as a metric to quantify the image quality of ground-based solar telescopes. We obtain semi-logarithmic plots indicating the correspondence between the Strehl ratio and the rms granulation contrast, for most practical values of the telescope diameters (
D
) and the atmospheric coherence diameters (
r
0
), for various levels of adaptive optics compensation. We estimate the efficiency of a few working solar adaptive optics systems by comparing the results of our simulations with the Strehl ratio and rms granulation contrast published by these systems. Our results can be used in conjunction with a plausible 50% system efficiency to predict the lower bound on the rms granulation contrast expected from ground-based solar telescopes. |
doi_str_mv | 10.1007/s11207-022-02105-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2770178437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770178437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-6ea059ef6e71354578e16b00eea91c884c74721bb432ec740f40e4080a969fde3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFa_gKeA5-jsn2Q3RylqCwWRVvC2bNbZkpJ2425y6Ld3YwRvHoZ5h_d7wzxCbincUwD5ECllIHNgLA2FImdnZEYLyXOo-Mc5mQFwNWp1Sa5i3AOMWDEjsDqYHWZvg2mb_pRtOrSNa6zpG3_MnA_ZxrcmZFtsMVrfYbwmF860EW9-95y8Pz9tF8t8_fqyWjyuc8sk9HmJBooKXYmS8kIUUiEtawBEU1GrlLBSSEbrWnCGSYMTgAIUmKqs3CfyObmbcrvgvwaMvd77IRzTSc2kBCqV4DK52OSywccY0OkuNAcTTpqCHl_UUzM6NaN_mtEsQXyCYjIfdxj-ov-hvgGAcGRl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770178437</pqid></control><display><type>article</type><title>Image Quality Specification for Solar Telescopes</title><source>Springer Nature - Complete Springer Journals</source><creator>Subramanian, Saraswathi Kalyani ; Rengaswamy, Sridharan</creator><creatorcontrib>Subramanian, Saraswathi Kalyani ; Rengaswamy, Sridharan</creatorcontrib><description>Modern large ground-based solar telescopes are invariably equipped with adaptive optics systems to enhance the high angular resolution imaging and spectroscopic capabilities in the presence of Earth’s atmospheric turbulence. The quality of the images obtained from these telescopes cannot be quantified with the Strehl ratio or other metrics that are used for nighttime astronomical telescopes directly. In this paper, we propose to use the root mean square (rms) granulation contrast as a metric to quantify the image quality of ground-based solar telescopes. We obtain semi-logarithmic plots indicating the correspondence between the Strehl ratio and the rms granulation contrast, for most practical values of the telescope diameters (
D
) and the atmospheric coherence diameters (
r
0
), for various levels of adaptive optics compensation. We estimate the efficiency of a few working solar adaptive optics systems by comparing the results of our simulations with the Strehl ratio and rms granulation contrast published by these systems. Our results can be used in conjunction with a plausible 50% system efficiency to predict the lower bound on the rms granulation contrast expected from ground-based solar telescopes.</description><identifier>ISSN: 0038-0938</identifier><identifier>EISSN: 1573-093X</identifier><identifier>DOI: 10.1007/s11207-022-02105-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adaptive optics ; Adaptive systems ; Angular resolution ; Astrophysics and Astroparticles ; Atmospheric Sciences ; Atmospheric turbulence ; Celestial bodies ; Granulation ; Image contrast ; Image quality ; Lower bounds ; Optics ; Physics ; Physics and Astronomy ; Solar physics ; Solar telescopes ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Strehl ratio ; Telescopes</subject><ispartof>Solar physics, 2023, Vol.298 (1), p.15, Article 15</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-6ea059ef6e71354578e16b00eea91c884c74721bb432ec740f40e4080a969fde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11207-022-02105-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11207-022-02105-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Subramanian, Saraswathi Kalyani</creatorcontrib><creatorcontrib>Rengaswamy, Sridharan</creatorcontrib><title>Image Quality Specification for Solar Telescopes</title><title>Solar physics</title><addtitle>Sol Phys</addtitle><description>Modern large ground-based solar telescopes are invariably equipped with adaptive optics systems to enhance the high angular resolution imaging and spectroscopic capabilities in the presence of Earth’s atmospheric turbulence. The quality of the images obtained from these telescopes cannot be quantified with the Strehl ratio or other metrics that are used for nighttime astronomical telescopes directly. In this paper, we propose to use the root mean square (rms) granulation contrast as a metric to quantify the image quality of ground-based solar telescopes. We obtain semi-logarithmic plots indicating the correspondence between the Strehl ratio and the rms granulation contrast, for most practical values of the telescope diameters (
D
) and the atmospheric coherence diameters (
r
0
), for various levels of adaptive optics compensation. We estimate the efficiency of a few working solar adaptive optics systems by comparing the results of our simulations with the Strehl ratio and rms granulation contrast published by these systems. Our results can be used in conjunction with a plausible 50% system efficiency to predict the lower bound on the rms granulation contrast expected from ground-based solar telescopes.</description><subject>Adaptive optics</subject><subject>Adaptive systems</subject><subject>Angular resolution</subject><subject>Astrophysics and Astroparticles</subject><subject>Atmospheric Sciences</subject><subject>Atmospheric turbulence</subject><subject>Celestial bodies</subject><subject>Granulation</subject><subject>Image contrast</subject><subject>Image quality</subject><subject>Lower bounds</subject><subject>Optics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solar physics</subject><subject>Solar telescopes</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Strehl ratio</subject><subject>Telescopes</subject><issn>0038-0938</issn><issn>1573-093X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9Lw0AQxRdRsFa_gKeA5-jsn2Q3RylqCwWRVvC2bNbZkpJ2425y6Ld3YwRvHoZ5h_d7wzxCbincUwD5ECllIHNgLA2FImdnZEYLyXOo-Mc5mQFwNWp1Sa5i3AOMWDEjsDqYHWZvg2mb_pRtOrSNa6zpG3_MnA_ZxrcmZFtsMVrfYbwmF860EW9-95y8Pz9tF8t8_fqyWjyuc8sk9HmJBooKXYmS8kIUUiEtawBEU1GrlLBSSEbrWnCGSYMTgAIUmKqs3CfyObmbcrvgvwaMvd77IRzTSc2kBCqV4DK52OSywccY0OkuNAcTTpqCHl_UUzM6NaN_mtEsQXyCYjIfdxj-ov-hvgGAcGRl</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Subramanian, Saraswathi Kalyani</creator><creator>Rengaswamy, Sridharan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2023</creationdate><title>Image Quality Specification for Solar Telescopes</title><author>Subramanian, Saraswathi Kalyani ; Rengaswamy, Sridharan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-6ea059ef6e71354578e16b00eea91c884c74721bb432ec740f40e4080a969fde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive optics</topic><topic>Adaptive systems</topic><topic>Angular resolution</topic><topic>Astrophysics and Astroparticles</topic><topic>Atmospheric Sciences</topic><topic>Atmospheric turbulence</topic><topic>Celestial bodies</topic><topic>Granulation</topic><topic>Image contrast</topic><topic>Image quality</topic><topic>Lower bounds</topic><topic>Optics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solar physics</topic><topic>Solar telescopes</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Strehl ratio</topic><topic>Telescopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subramanian, Saraswathi Kalyani</creatorcontrib><creatorcontrib>Rengaswamy, Sridharan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Solar physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subramanian, Saraswathi Kalyani</au><au>Rengaswamy, Sridharan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Quality Specification for Solar Telescopes</atitle><jtitle>Solar physics</jtitle><stitle>Sol Phys</stitle><date>2023</date><risdate>2023</risdate><volume>298</volume><issue>1</issue><spage>15</spage><pages>15-</pages><artnum>15</artnum><issn>0038-0938</issn><eissn>1573-093X</eissn><abstract>Modern large ground-based solar telescopes are invariably equipped with adaptive optics systems to enhance the high angular resolution imaging and spectroscopic capabilities in the presence of Earth’s atmospheric turbulence. The quality of the images obtained from these telescopes cannot be quantified with the Strehl ratio or other metrics that are used for nighttime astronomical telescopes directly. In this paper, we propose to use the root mean square (rms) granulation contrast as a metric to quantify the image quality of ground-based solar telescopes. We obtain semi-logarithmic plots indicating the correspondence between the Strehl ratio and the rms granulation contrast, for most practical values of the telescope diameters (
D
) and the atmospheric coherence diameters (
r
0
), for various levels of adaptive optics compensation. We estimate the efficiency of a few working solar adaptive optics systems by comparing the results of our simulations with the Strehl ratio and rms granulation contrast published by these systems. Our results can be used in conjunction with a plausible 50% system efficiency to predict the lower bound on the rms granulation contrast expected from ground-based solar telescopes.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11207-022-02105-2</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-0938 |
ispartof | Solar physics, 2023, Vol.298 (1), p.15, Article 15 |
issn | 0038-0938 1573-093X |
language | eng |
recordid | cdi_proquest_journals_2770178437 |
source | Springer Nature - Complete Springer Journals |
subjects | Adaptive optics Adaptive systems Angular resolution Astrophysics and Astroparticles Atmospheric Sciences Atmospheric turbulence Celestial bodies Granulation Image contrast Image quality Lower bounds Optics Physics Physics and Astronomy Solar physics Solar telescopes Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Strehl ratio Telescopes |
title | Image Quality Specification for Solar Telescopes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Quality%20Specification%20for%20Solar%20Telescopes&rft.jtitle=Solar%20physics&rft.au=Subramanian,%20Saraswathi%20Kalyani&rft.date=2023&rft.volume=298&rft.issue=1&rft.spage=15&rft.pages=15-&rft.artnum=15&rft.issn=0038-0938&rft.eissn=1573-093X&rft_id=info:doi/10.1007/s11207-022-02105-2&rft_dat=%3Cproquest_cross%3E2770178437%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770178437&rft_id=info:pmid/&rfr_iscdi=true |