Gatherplot: A Non-Overlapping Scatterplot

Scatterplots are a common tool for exploring multidimensional datasets, especially in the form of scatterplot matrices (SPLOMs). However, scatterplots suffer from overplotting when categorical variables are mapped to one or two axes, or the same continuous variable is used for both axes. Previous me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-01
Hauptverfasser: Park, Deokgun, Sung-Hee, Kim, Elmqvist, Niklas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Park, Deokgun
Sung-Hee, Kim
Elmqvist, Niklas
description Scatterplots are a common tool for exploring multidimensional datasets, especially in the form of scatterplot matrices (SPLOMs). However, scatterplots suffer from overplotting when categorical variables are mapped to one or two axes, or the same continuous variable is used for both axes. Previous methods such as histograms or violin plots use aggregation, which makes brushing and linking difficult. To address this, we propose gatherplots, an extension of scatterplots to manage the overplotting problem. Gatherplots are a form of unit visualization, which avoid aggregation and maintain the identity of individual objects to ease visual perception. In gatherplots, every visual mark that maps to the same position coalesces to form a packed entity, thereby making it easier to see the overview of data groupings. The size and aspect ratio of marks can also be changed dynamically to make it easier to compare the composition of different groups. In the case of a categorical variable vs. a categorical variable, we propose a heuristic to decide bin sizes for optimal space usage. To validate our work, we conducted a crowdsourced user study that shows that gatherplots enable people to assess data distribution more quickly and more correctly than when using jittered scatterplots.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2770178248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770178248</sourcerecordid><originalsourceid>FETCH-proquest_journals_27701782483</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdE8syUgtKsjJL7FScFTwy8_T9S9LLcpJLCjIzEtXCE5OLCmBSPMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRubmBobmFkYmFMXGqAM2-MHM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770178248</pqid></control><display><type>article</type><title>Gatherplot: A Non-Overlapping Scatterplot</title><source>Free E- Journals</source><creator>Park, Deokgun ; Sung-Hee, Kim ; Elmqvist, Niklas</creator><creatorcontrib>Park, Deokgun ; Sung-Hee, Kim ; Elmqvist, Niklas</creatorcontrib><description>Scatterplots are a common tool for exploring multidimensional datasets, especially in the form of scatterplot matrices (SPLOMs). However, scatterplots suffer from overplotting when categorical variables are mapped to one or two axes, or the same continuous variable is used for both axes. Previous methods such as histograms or violin plots use aggregation, which makes brushing and linking difficult. To address this, we propose gatherplots, an extension of scatterplots to manage the overplotting problem. Gatherplots are a form of unit visualization, which avoid aggregation and maintain the identity of individual objects to ease visual perception. In gatherplots, every visual mark that maps to the same position coalesces to form a packed entity, thereby making it easier to see the overview of data groupings. The size and aspect ratio of marks can also be changed dynamically to make it easier to compare the composition of different groups. In the case of a categorical variable vs. a categorical variable, we propose a heuristic to decide bin sizes for optimal space usage. To validate our work, we conducted a crowdsourced user study that shows that gatherplots enable people to assess data distribution more quickly and more correctly than when using jittered scatterplots.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Agglomeration ; Aspect ratio ; Continuity (mathematics) ; Histograms ; Visual perception</subject><ispartof>arXiv.org, 2023-01</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Park, Deokgun</creatorcontrib><creatorcontrib>Sung-Hee, Kim</creatorcontrib><creatorcontrib>Elmqvist, Niklas</creatorcontrib><title>Gatherplot: A Non-Overlapping Scatterplot</title><title>arXiv.org</title><description>Scatterplots are a common tool for exploring multidimensional datasets, especially in the form of scatterplot matrices (SPLOMs). However, scatterplots suffer from overplotting when categorical variables are mapped to one or two axes, or the same continuous variable is used for both axes. Previous methods such as histograms or violin plots use aggregation, which makes brushing and linking difficult. To address this, we propose gatherplots, an extension of scatterplots to manage the overplotting problem. Gatherplots are a form of unit visualization, which avoid aggregation and maintain the identity of individual objects to ease visual perception. In gatherplots, every visual mark that maps to the same position coalesces to form a packed entity, thereby making it easier to see the overview of data groupings. The size and aspect ratio of marks can also be changed dynamically to make it easier to compare the composition of different groups. In the case of a categorical variable vs. a categorical variable, we propose a heuristic to decide bin sizes for optimal space usage. To validate our work, we conducted a crowdsourced user study that shows that gatherplots enable people to assess data distribution more quickly and more correctly than when using jittered scatterplots.</description><subject>Agglomeration</subject><subject>Aspect ratio</subject><subject>Continuity (mathematics)</subject><subject>Histograms</subject><subject>Visual perception</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdE8syUgtKsjJL7FScFTwy8_T9S9LLcpJLCjIzEtXCE5OLCmBSPMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRubmBobmFkYmFMXGqAM2-MHM</recordid><startdate>20230125</startdate><enddate>20230125</enddate><creator>Park, Deokgun</creator><creator>Sung-Hee, Kim</creator><creator>Elmqvist, Niklas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230125</creationdate><title>Gatherplot: A Non-Overlapping Scatterplot</title><author>Park, Deokgun ; Sung-Hee, Kim ; Elmqvist, Niklas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27701782483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agglomeration</topic><topic>Aspect ratio</topic><topic>Continuity (mathematics)</topic><topic>Histograms</topic><topic>Visual perception</topic><toplevel>online_resources</toplevel><creatorcontrib>Park, Deokgun</creatorcontrib><creatorcontrib>Sung-Hee, Kim</creatorcontrib><creatorcontrib>Elmqvist, Niklas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Deokgun</au><au>Sung-Hee, Kim</au><au>Elmqvist, Niklas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Gatherplot: A Non-Overlapping Scatterplot</atitle><jtitle>arXiv.org</jtitle><date>2023-01-25</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Scatterplots are a common tool for exploring multidimensional datasets, especially in the form of scatterplot matrices (SPLOMs). However, scatterplots suffer from overplotting when categorical variables are mapped to one or two axes, or the same continuous variable is used for both axes. Previous methods such as histograms or violin plots use aggregation, which makes brushing and linking difficult. To address this, we propose gatherplots, an extension of scatterplots to manage the overplotting problem. Gatherplots are a form of unit visualization, which avoid aggregation and maintain the identity of individual objects to ease visual perception. In gatherplots, every visual mark that maps to the same position coalesces to form a packed entity, thereby making it easier to see the overview of data groupings. The size and aspect ratio of marks can also be changed dynamically to make it easier to compare the composition of different groups. In the case of a categorical variable vs. a categorical variable, we propose a heuristic to decide bin sizes for optimal space usage. To validate our work, we conducted a crowdsourced user study that shows that gatherplots enable people to assess data distribution more quickly and more correctly than when using jittered scatterplots.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2770178248
source Free E- Journals
subjects Agglomeration
Aspect ratio
Continuity (mathematics)
Histograms
Visual perception
title Gatherplot: A Non-Overlapping Scatterplot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Gatherplot:%20A%20Non-Overlapping%20Scatterplot&rft.jtitle=arXiv.org&rft.au=Park,%20Deokgun&rft.date=2023-01-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2770178248%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770178248&rft_id=info:pmid/&rfr_iscdi=true