Architectural style classification based on CNN and channel–spatial attention

The accurate classification of architectural styles is of great significance to the study of architectural culture and human historical civilization. Models based on convolutional neural network (CNN) have achieved highly competitive results in the field of architectural style classification owing t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing image and video processing, 2023-02, Vol.17 (1), p.99-107
Hauptverfasser: Wang, Bo, Zhang, Sulan, Zhang, Jifu, Cai, Zhenjiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107
container_issue 1
container_start_page 99
container_title Signal, image and video processing
container_volume 17
creator Wang, Bo
Zhang, Sulan
Zhang, Jifu
Cai, Zhenjiao
description The accurate classification of architectural styles is of great significance to the study of architectural culture and human historical civilization. Models based on convolutional neural network (CNN) have achieved highly competitive results in the field of architectural style classification owing to its more powerful capability of feature expression. However, most of the CNN models to date only extract the global features of architecture facade or focus on some regions of architecture and fail to extract the spatial features of different components. To improve the accuracy of architectural style classification, we propose an architectural style classification method based on CNN and channel–spatial attention. Firstly, we add a preprocessing operation before CNN feature extraction to select main building candidate region in architectural image and then use CNN feature extractor for deep feature extraction. Secondly, channel–spatial attention module is introduced to generate an attention map, which can not only enhance the texture feature representation of architectural images but also focus on the spatial features of different architectural elements. Finally, the Softmax classifier is used to predict the score of the target class. The experimental results on the Architectural Style Dataset and AHE_Dataset have achieved satisfactory performance.
doi_str_mv 10.1007/s11760-022-02208-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2770084007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770084007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-366d164f2b80e843e436ed1709144612525329c6f66ee2c8cf67cac1a00d26513</originalsourceid><addsrcrecordid>eNp9kL9OwzAQhy0EElXpCzBFYg7c2antjlXFP6lqF5gt17nQVCEJtjt04x14Q54ElyDYsHTyDd_v7vQxdolwjQDqJiAqCTlwfizQOZywEWopclSIp789iHM2CWEH6QmutNQjtp57t60jubj3tslCPDSUucaGUFe1s7Hu2mxjA5VZaharVWbbMnNb27bUfL5_hD4hKWdjpPYIX7CzyjaBJj__mD3f3T4tHvLl-v5xMV_mTuAs5kLKEmVR8Y0G0oWgQkgq04kzLAqJfMqngs-crKQk4k67SipnHVqAksspijG7Gub2vnvbU4hm1-19m1YarhSALpKZRPGBcr4LwVNlel-_Wn8wCObozgzuTPJmvt0ZSCExhEKC2xfyf6P_SX0B5YhxKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770084007</pqid></control><display><type>article</type><title>Architectural style classification based on CNN and channel–spatial attention</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Bo ; Zhang, Sulan ; Zhang, Jifu ; Cai, Zhenjiao</creator><creatorcontrib>Wang, Bo ; Zhang, Sulan ; Zhang, Jifu ; Cai, Zhenjiao</creatorcontrib><description>The accurate classification of architectural styles is of great significance to the study of architectural culture and human historical civilization. Models based on convolutional neural network (CNN) have achieved highly competitive results in the field of architectural style classification owing to its more powerful capability of feature expression. However, most of the CNN models to date only extract the global features of architecture facade or focus on some regions of architecture and fail to extract the spatial features of different components. To improve the accuracy of architectural style classification, we propose an architectural style classification method based on CNN and channel–spatial attention. Firstly, we add a preprocessing operation before CNN feature extraction to select main building candidate region in architectural image and then use CNN feature extractor for deep feature extraction. Secondly, channel–spatial attention module is introduced to generate an attention map, which can not only enhance the texture feature representation of architectural images but also focus on the spatial features of different architectural elements. Finally, the Softmax classifier is used to predict the score of the target class. The experimental results on the Architectural Style Dataset and AHE_Dataset have achieved satisfactory performance.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-022-02208-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Architecture ; Artificial neural networks ; Classification ; Computer Imaging ; Computer Science ; Datasets ; Feature extraction ; Image enhancement ; Image Processing and Computer Vision ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Signal, image and video processing, 2023-02, Vol.17 (1), p.99-107</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-366d164f2b80e843e436ed1709144612525329c6f66ee2c8cf67cac1a00d26513</citedby><cites>FETCH-LOGICAL-c319t-366d164f2b80e843e436ed1709144612525329c6f66ee2c8cf67cac1a00d26513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-022-02208-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-022-02208-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Zhang, Sulan</creatorcontrib><creatorcontrib>Zhang, Jifu</creatorcontrib><creatorcontrib>Cai, Zhenjiao</creatorcontrib><title>Architectural style classification based on CNN and channel–spatial attention</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>The accurate classification of architectural styles is of great significance to the study of architectural culture and human historical civilization. Models based on convolutional neural network (CNN) have achieved highly competitive results in the field of architectural style classification owing to its more powerful capability of feature expression. However, most of the CNN models to date only extract the global features of architecture facade or focus on some regions of architecture and fail to extract the spatial features of different components. To improve the accuracy of architectural style classification, we propose an architectural style classification method based on CNN and channel–spatial attention. Firstly, we add a preprocessing operation before CNN feature extraction to select main building candidate region in architectural image and then use CNN feature extractor for deep feature extraction. Secondly, channel–spatial attention module is introduced to generate an attention map, which can not only enhance the texture feature representation of architectural images but also focus on the spatial features of different architectural elements. Finally, the Softmax classifier is used to predict the score of the target class. The experimental results on the Architectural Style Dataset and AHE_Dataset have achieved satisfactory performance.</description><subject>Architecture</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Image enhancement</subject><subject>Image Processing and Computer Vision</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kL9OwzAQhy0EElXpCzBFYg7c2antjlXFP6lqF5gt17nQVCEJtjt04x14Q54ElyDYsHTyDd_v7vQxdolwjQDqJiAqCTlwfizQOZywEWopclSIp789iHM2CWEH6QmutNQjtp57t60jubj3tslCPDSUucaGUFe1s7Hu2mxjA5VZaharVWbbMnNb27bUfL5_hD4hKWdjpPYIX7CzyjaBJj__mD3f3T4tHvLl-v5xMV_mTuAs5kLKEmVR8Y0G0oWgQkgq04kzLAqJfMqngs-crKQk4k67SipnHVqAksspijG7Gub2vnvbU4hm1-19m1YarhSALpKZRPGBcr4LwVNlel-_Wn8wCObozgzuTPJmvt0ZSCExhEKC2xfyf6P_SX0B5YhxKw</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Wang, Bo</creator><creator>Zhang, Sulan</creator><creator>Zhang, Jifu</creator><creator>Cai, Zhenjiao</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230201</creationdate><title>Architectural style classification based on CNN and channel–spatial attention</title><author>Wang, Bo ; Zhang, Sulan ; Zhang, Jifu ; Cai, Zhenjiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-366d164f2b80e843e436ed1709144612525329c6f66ee2c8cf67cac1a00d26513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Architecture</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Image enhancement</topic><topic>Image Processing and Computer Vision</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Zhang, Sulan</creatorcontrib><creatorcontrib>Zhang, Jifu</creatorcontrib><creatorcontrib>Cai, Zhenjiao</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bo</au><au>Zhang, Sulan</au><au>Zhang, Jifu</au><au>Cai, Zhenjiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Architectural style classification based on CNN and channel–spatial attention</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>17</volume><issue>1</issue><spage>99</spage><epage>107</epage><pages>99-107</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>The accurate classification of architectural styles is of great significance to the study of architectural culture and human historical civilization. Models based on convolutional neural network (CNN) have achieved highly competitive results in the field of architectural style classification owing to its more powerful capability of feature expression. However, most of the CNN models to date only extract the global features of architecture facade or focus on some regions of architecture and fail to extract the spatial features of different components. To improve the accuracy of architectural style classification, we propose an architectural style classification method based on CNN and channel–spatial attention. Firstly, we add a preprocessing operation before CNN feature extraction to select main building candidate region in architectural image and then use CNN feature extractor for deep feature extraction. Secondly, channel–spatial attention module is introduced to generate an attention map, which can not only enhance the texture feature representation of architectural images but also focus on the spatial features of different architectural elements. Finally, the Softmax classifier is used to predict the score of the target class. The experimental results on the Architectural Style Dataset and AHE_Dataset have achieved satisfactory performance.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-022-02208-0</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2023-02, Vol.17 (1), p.99-107
issn 1863-1703
1863-1711
language eng
recordid cdi_proquest_journals_2770084007
source SpringerLink Journals - AutoHoldings
subjects Architecture
Artificial neural networks
Classification
Computer Imaging
Computer Science
Datasets
Feature extraction
Image enhancement
Image Processing and Computer Vision
Multimedia Information Systems
Original Paper
Pattern Recognition and Graphics
Signal,Image and Speech Processing
Vision
title Architectural style classification based on CNN and channel–spatial attention
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Architectural%20style%20classification%20based%20on%20CNN%20and%20channel%E2%80%93spatial%20attention&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Wang,%20Bo&rft.date=2023-02-01&rft.volume=17&rft.issue=1&rft.spage=99&rft.epage=107&rft.pages=99-107&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-022-02208-0&rft_dat=%3Cproquest_cross%3E2770084007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770084007&rft_id=info:pmid/&rfr_iscdi=true