Interface behavior of diffusion bonding AZ31 magnesium alloy to 3003 aluminum alloy using silver-based interlayer
In order to connect magnesium to aluminum reliably, the AZ31 magnesium alloy/3003 aluminum alloy was diffusion bonded with the silver copper zinc alloy under argon atmosphere. The microstructure, composition, and mechanical properties of the joints have been studied. The results showed that a comple...
Gespeichert in:
Veröffentlicht in: | Welding in the world 2023-02, Vol.67 (2), p.541-548 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 548 |
---|---|
container_issue | 2 |
container_start_page | 541 |
container_title | Welding in the world |
container_volume | 67 |
creator | Yang, Tuoyu Geng, Shiqiang Zhang, Deku Wang, Kehong Guo, Chun Zhang, Yajing |
description | In order to connect magnesium to aluminum reliably, the AZ31 magnesium alloy/3003 aluminum alloy was diffusion bonded with the silver copper zinc alloy under argon atmosphere. The microstructure, composition, and mechanical properties of the joints have been studied. The results showed that a complete metallurgical bond was formed at the 420 ℃ for 120 min, and obvious diffusion layers were formed at the interfaces between the base metals and the interlayer. The thickness of the diffusion layer on the aluminum side was greater than that on the magnesium side, aluminum diffused to a farther position than magnesium. The distribution of aluminum in the interlayer was in a gradient from outside to inside. The hardness of the diffusion layer near aluminum is 194 HV, and that near magnesium is 111 HV, both of which are significantly higher than the adjacent base metal. The hardness distribution of the joint is V-shaped. The maximum tensile shear strength of the joint is 71 MPa, and the tensile shear fracture morphology of the joint is cleavage fracture. The formation mechanism and structural characteristics of AZ31/AgCuZn/3003 diffusion joints have been revealed, which can provide novel ideas and evidences of interlayer components and interface behavior for the subsequent research work on Mg/Al dissimilar metal bonging. |
doi_str_mv | 10.1007/s40194-022-01458-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2770083913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770083913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-515e5f3c2eff265411977c65124e095f222e16e9bda1f481309cb1e781f249643</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKv_gKeA5-hMkv3IsYhfUPCiFy8hu53UyHZjk26h_71bK3rzMAwzvN978Bi7RLhGgOoma0CjBUgpAHVRC3XEJlhXtSjL0hyzCYBWQsq6PmVnOX8AgBlnwtZP_YaSdy3xht7dNsTEo-eL4P2QQ-x5E_tF6Jd89qaQr9yypxyGFXddF3d8E7kCUOM1rEL_-x7Jkcih21ISjcu04GEf07kdpXN24l2X6eJnT9nr_d3L7aOYPz883c7molVoNqLAggqvWkney7LQiKaq2rJAqQlM4aWUhCWZZuHQ6xoVmLZBqmr0UptSqym7Ovh-prgeKG_sRxxSP0ZaWVUAtTKoRpU8qNoUc07k7WcKK5d2FsHuq7WHau1Yrf2u1u4hdYDyKO6XlP6s_6G-AK41e4E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770083913</pqid></control><display><type>article</type><title>Interface behavior of diffusion bonding AZ31 magnesium alloy to 3003 aluminum alloy using silver-based interlayer</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, Tuoyu ; Geng, Shiqiang ; Zhang, Deku ; Wang, Kehong ; Guo, Chun ; Zhang, Yajing</creator><creatorcontrib>Yang, Tuoyu ; Geng, Shiqiang ; Zhang, Deku ; Wang, Kehong ; Guo, Chun ; Zhang, Yajing</creatorcontrib><description>In order to connect magnesium to aluminum reliably, the AZ31 magnesium alloy/3003 aluminum alloy was diffusion bonded with the silver copper zinc alloy under argon atmosphere. The microstructure, composition, and mechanical properties of the joints have been studied. The results showed that a complete metallurgical bond was formed at the 420 ℃ for 120 min, and obvious diffusion layers were formed at the interfaces between the base metals and the interlayer. The thickness of the diffusion layer on the aluminum side was greater than that on the magnesium side, aluminum diffused to a farther position than magnesium. The distribution of aluminum in the interlayer was in a gradient from outside to inside. The hardness of the diffusion layer near aluminum is 194 HV, and that near magnesium is 111 HV, both of which are significantly higher than the adjacent base metal. The hardness distribution of the joint is V-shaped. The maximum tensile shear strength of the joint is 71 MPa, and the tensile shear fracture morphology of the joint is cleavage fracture. The formation mechanism and structural characteristics of AZ31/AgCuZn/3003 diffusion joints have been revealed, which can provide novel ideas and evidences of interlayer components and interface behavior for the subsequent research work on Mg/Al dissimilar metal bonging.</description><identifier>ISSN: 0043-2288</identifier><identifier>EISSN: 1878-6669</identifier><identifier>DOI: 10.1007/s40194-022-01458-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum alloys ; Aluminum base alloys ; Argon ; Base metal ; Chemistry and Materials Science ; Copper base alloys ; Copper zinc alloys ; Diffusion layers ; Diffusion welding ; Dissimilar metals ; Hardness ; Interlayers ; Magnesium alloys ; Magnesium base alloys ; Materials Science ; Mechanical properties ; Metallic Materials ; Metallurgical analysis ; Research Paper ; Shear strength ; Silver ; Solid Mechanics ; Theoretical and Applied Mechanics ; Thickness</subject><ispartof>Welding in the world, 2023-02, Vol.67 (2), p.541-548</ispartof><rights>International Institute of Welding 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-515e5f3c2eff265411977c65124e095f222e16e9bda1f481309cb1e781f249643</citedby><cites>FETCH-LOGICAL-c319t-515e5f3c2eff265411977c65124e095f222e16e9bda1f481309cb1e781f249643</cites><orcidid>0000-0002-8992-6808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40194-022-01458-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40194-022-01458-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Yang, Tuoyu</creatorcontrib><creatorcontrib>Geng, Shiqiang</creatorcontrib><creatorcontrib>Zhang, Deku</creatorcontrib><creatorcontrib>Wang, Kehong</creatorcontrib><creatorcontrib>Guo, Chun</creatorcontrib><creatorcontrib>Zhang, Yajing</creatorcontrib><title>Interface behavior of diffusion bonding AZ31 magnesium alloy to 3003 aluminum alloy using silver-based interlayer</title><title>Welding in the world</title><addtitle>Weld World</addtitle><description>In order to connect magnesium to aluminum reliably, the AZ31 magnesium alloy/3003 aluminum alloy was diffusion bonded with the silver copper zinc alloy under argon atmosphere. The microstructure, composition, and mechanical properties of the joints have been studied. The results showed that a complete metallurgical bond was formed at the 420 ℃ for 120 min, and obvious diffusion layers were formed at the interfaces between the base metals and the interlayer. The thickness of the diffusion layer on the aluminum side was greater than that on the magnesium side, aluminum diffused to a farther position than magnesium. The distribution of aluminum in the interlayer was in a gradient from outside to inside. The hardness of the diffusion layer near aluminum is 194 HV, and that near magnesium is 111 HV, both of which are significantly higher than the adjacent base metal. The hardness distribution of the joint is V-shaped. The maximum tensile shear strength of the joint is 71 MPa, and the tensile shear fracture morphology of the joint is cleavage fracture. The formation mechanism and structural characteristics of AZ31/AgCuZn/3003 diffusion joints have been revealed, which can provide novel ideas and evidences of interlayer components and interface behavior for the subsequent research work on Mg/Al dissimilar metal bonging.</description><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Argon</subject><subject>Base metal</subject><subject>Chemistry and Materials Science</subject><subject>Copper base alloys</subject><subject>Copper zinc alloys</subject><subject>Diffusion layers</subject><subject>Diffusion welding</subject><subject>Dissimilar metals</subject><subject>Hardness</subject><subject>Interlayers</subject><subject>Magnesium alloys</subject><subject>Magnesium base alloys</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Metallurgical analysis</subject><subject>Research Paper</subject><subject>Shear strength</subject><subject>Silver</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thickness</subject><issn>0043-2288</issn><issn>1878-6669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKv_gKeA5-hMkv3IsYhfUPCiFy8hu53UyHZjk26h_71bK3rzMAwzvN978Bi7RLhGgOoma0CjBUgpAHVRC3XEJlhXtSjL0hyzCYBWQsq6PmVnOX8AgBlnwtZP_YaSdy3xht7dNsTEo-eL4P2QQ-x5E_tF6Jd89qaQr9yypxyGFXddF3d8E7kCUOM1rEL_-x7Jkcih21ISjcu04GEf07kdpXN24l2X6eJnT9nr_d3L7aOYPz883c7molVoNqLAggqvWkney7LQiKaq2rJAqQlM4aWUhCWZZuHQ6xoVmLZBqmr0UptSqym7Ovh-prgeKG_sRxxSP0ZaWVUAtTKoRpU8qNoUc07k7WcKK5d2FsHuq7WHau1Yrf2u1u4hdYDyKO6XlP6s_6G-AK41e4E</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Yang, Tuoyu</creator><creator>Geng, Shiqiang</creator><creator>Zhang, Deku</creator><creator>Wang, Kehong</creator><creator>Guo, Chun</creator><creator>Zhang, Yajing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8992-6808</orcidid></search><sort><creationdate>20230201</creationdate><title>Interface behavior of diffusion bonding AZ31 magnesium alloy to 3003 aluminum alloy using silver-based interlayer</title><author>Yang, Tuoyu ; Geng, Shiqiang ; Zhang, Deku ; Wang, Kehong ; Guo, Chun ; Zhang, Yajing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-515e5f3c2eff265411977c65124e095f222e16e9bda1f481309cb1e781f249643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Argon</topic><topic>Base metal</topic><topic>Chemistry and Materials Science</topic><topic>Copper base alloys</topic><topic>Copper zinc alloys</topic><topic>Diffusion layers</topic><topic>Diffusion welding</topic><topic>Dissimilar metals</topic><topic>Hardness</topic><topic>Interlayers</topic><topic>Magnesium alloys</topic><topic>Magnesium base alloys</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Metallurgical analysis</topic><topic>Research Paper</topic><topic>Shear strength</topic><topic>Silver</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Tuoyu</creatorcontrib><creatorcontrib>Geng, Shiqiang</creatorcontrib><creatorcontrib>Zhang, Deku</creatorcontrib><creatorcontrib>Wang, Kehong</creatorcontrib><creatorcontrib>Guo, Chun</creatorcontrib><creatorcontrib>Zhang, Yajing</creatorcontrib><collection>CrossRef</collection><jtitle>Welding in the world</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Tuoyu</au><au>Geng, Shiqiang</au><au>Zhang, Deku</au><au>Wang, Kehong</au><au>Guo, Chun</au><au>Zhang, Yajing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface behavior of diffusion bonding AZ31 magnesium alloy to 3003 aluminum alloy using silver-based interlayer</atitle><jtitle>Welding in the world</jtitle><stitle>Weld World</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>67</volume><issue>2</issue><spage>541</spage><epage>548</epage><pages>541-548</pages><issn>0043-2288</issn><eissn>1878-6669</eissn><abstract>In order to connect magnesium to aluminum reliably, the AZ31 magnesium alloy/3003 aluminum alloy was diffusion bonded with the silver copper zinc alloy under argon atmosphere. The microstructure, composition, and mechanical properties of the joints have been studied. The results showed that a complete metallurgical bond was formed at the 420 ℃ for 120 min, and obvious diffusion layers were formed at the interfaces between the base metals and the interlayer. The thickness of the diffusion layer on the aluminum side was greater than that on the magnesium side, aluminum diffused to a farther position than magnesium. The distribution of aluminum in the interlayer was in a gradient from outside to inside. The hardness of the diffusion layer near aluminum is 194 HV, and that near magnesium is 111 HV, both of which are significantly higher than the adjacent base metal. The hardness distribution of the joint is V-shaped. The maximum tensile shear strength of the joint is 71 MPa, and the tensile shear fracture morphology of the joint is cleavage fracture. The formation mechanism and structural characteristics of AZ31/AgCuZn/3003 diffusion joints have been revealed, which can provide novel ideas and evidences of interlayer components and interface behavior for the subsequent research work on Mg/Al dissimilar metal bonging.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40194-022-01458-3</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8992-6808</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-2288 |
ispartof | Welding in the world, 2023-02, Vol.67 (2), p.541-548 |
issn | 0043-2288 1878-6669 |
language | eng |
recordid | cdi_proquest_journals_2770083913 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aluminum alloys Aluminum base alloys Argon Base metal Chemistry and Materials Science Copper base alloys Copper zinc alloys Diffusion layers Diffusion welding Dissimilar metals Hardness Interlayers Magnesium alloys Magnesium base alloys Materials Science Mechanical properties Metallic Materials Metallurgical analysis Research Paper Shear strength Silver Solid Mechanics Theoretical and Applied Mechanics Thickness |
title | Interface behavior of diffusion bonding AZ31 magnesium alloy to 3003 aluminum alloy using silver-based interlayer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20behavior%20of%20diffusion%20bonding%20AZ31%20magnesium%20alloy%20to%203003%20aluminum%20alloy%20using%20silver-based%20interlayer&rft.jtitle=Welding%20in%20the%20world&rft.au=Yang,%20Tuoyu&rft.date=2023-02-01&rft.volume=67&rft.issue=2&rft.spage=541&rft.epage=548&rft.pages=541-548&rft.issn=0043-2288&rft.eissn=1878-6669&rft_id=info:doi/10.1007/s40194-022-01458-3&rft_dat=%3Cproquest_cross%3E2770083913%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770083913&rft_id=info:pmid/&rfr_iscdi=true |