Crystal growth and properties of pure L-alanine and boric acid doped L-alanine nonlinear optical single crystals for frequency conversion

Frequency conversion materials such as pure and 5 wt % Boric acid doped L-alanine crystals are grown using the slow evaporation technique at room temperature. Single crystal XRD reported that the crystals formed attained the orthorhombic system of noncentrosymmetric space group P2 1 2 1 2 1 . FTIR a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2023-02, Vol.34 (4), p.280, Article 280
Hauptverfasser: Rani, A. Dilli, Kumari, C. Rathika Thaya, Nageshwari, M., Sangeetha, P., Vinitha, G., Caroline, M. Lydia, Kumaresan, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 280
container_title Journal of materials science. Materials in electronics
container_volume 34
creator Rani, A. Dilli
Kumari, C. Rathika Thaya
Nageshwari, M.
Sangeetha, P.
Vinitha, G.
Caroline, M. Lydia
Kumaresan, S.
description Frequency conversion materials such as pure and 5 wt % Boric acid doped L-alanine crystals are grown using the slow evaporation technique at room temperature. Single crystal XRD reported that the crystals formed attained the orthorhombic system of noncentrosymmetric space group P2 1 2 1 2 1 . FTIR analysis established the presence of groups such as COO − , NH 3 + , CH 2 , CH and boron (B) element from shift in vibrational modes of at lower frequency region is also confirmed by EDAX measurement. The UV–Vis spectral study predicted the cut-off wavelength for pure LA and boric acid doped LA at 245 nm and 238 nm and thereby energy gap, urbach energy were also evaluated. Vicker’s microhardness study categorized the harvested crystals as soft materials following RISE effect. The dielectric characterization such as dielectric constant and dielectric loss were studied at various temperature ranges. Jonscher’s power law verifies the conductivity mechanism with s = 0.988, 0.985 for pure LA and doped LA. Laser damage threshold study using an Nd:YAG laser (1064 nm) evinces the stability of the material to withstand high intensity lasers in NLO applications. The luminescence nature of crystals was investigated in the range 250–600 nm and confirmed violet emission radiation. TGA-DTA analysis showed that the crystals possess good thermal stability. Second harmonic generation (SHG) was examined from the emission of green light from the samples by Kurtz Perry technique. The Z-scan investigations on the crystals reveal that they undergo two photon absorption, self-defocusing and hence greater third order nonlinear susceptibility χ 3 of order of 10 –8 esu encompasses the grown crystals in the development of opto-electronic devices and for the conversion of energy process.
doi_str_mv 10.1007/s10854-022-09699-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2769446090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2769446090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e14a105249440714585ecb8395563e017abb547c0aa9d2d19f2b09fc84137bca3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwscTasHTuOj6jiT6rEBSRuluM4JVWwg52C-gi8NW6DBCdOe5hvZncHoXMKlxRAXiUKleAEGCOgSqUIHKAZFbIgvGIvh2gGSkjCBWPH6CSlNQCUvKhm6GsRt2k0PV7F8Dm-YuMbPMQwuDh2LuHQ4mETHV4S0xvfebcH6hA7i43tGtxktPkj--D7PE3EYRg7m4NT51e9w3bak3AbIm6je984b7fYBv_hYuqCP0VHbdbd2c-co-fbm6fFPVk-3j0srpfEMgkjcZQbCoJxxTlIykUlnK2rQglRFg6oNHUtuLRgjGpYQ1XLalCtrTgtZG1NMUcXU25-Mx-RRr0Om-jzSs1kmVNLUJApNlE2hpSia_UQuzcTt5qC3lWup8p1rlzvK9c7UzGZUob9ysXf6H9c3548hig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769446090</pqid></control><display><type>article</type><title>Crystal growth and properties of pure L-alanine and boric acid doped L-alanine nonlinear optical single crystals for frequency conversion</title><source>SpringerNature Journals</source><creator>Rani, A. Dilli ; Kumari, C. Rathika Thaya ; Nageshwari, M. ; Sangeetha, P. ; Vinitha, G. ; Caroline, M. Lydia ; Kumaresan, S.</creator><creatorcontrib>Rani, A. Dilli ; Kumari, C. Rathika Thaya ; Nageshwari, M. ; Sangeetha, P. ; Vinitha, G. ; Caroline, M. Lydia ; Kumaresan, S.</creatorcontrib><description>Frequency conversion materials such as pure and 5 wt % Boric acid doped L-alanine crystals are grown using the slow evaporation technique at room temperature. Single crystal XRD reported that the crystals formed attained the orthorhombic system of noncentrosymmetric space group P2 1 2 1 2 1 . FTIR analysis established the presence of groups such as COO − , NH 3 + , CH 2 , CH and boron (B) element from shift in vibrational modes of at lower frequency region is also confirmed by EDAX measurement. The UV–Vis spectral study predicted the cut-off wavelength for pure LA and boric acid doped LA at 245 nm and 238 nm and thereby energy gap, urbach energy were also evaluated. Vicker’s microhardness study categorized the harvested crystals as soft materials following RISE effect. The dielectric characterization such as dielectric constant and dielectric loss were studied at various temperature ranges. Jonscher’s power law verifies the conductivity mechanism with s = 0.988, 0.985 for pure LA and doped LA. Laser damage threshold study using an Nd:YAG laser (1064 nm) evinces the stability of the material to withstand high intensity lasers in NLO applications. The luminescence nature of crystals was investigated in the range 250–600 nm and confirmed violet emission radiation. TGA-DTA analysis showed that the crystals possess good thermal stability. Second harmonic generation (SHG) was examined from the emission of green light from the samples by Kurtz Perry technique. The Z-scan investigations on the crystals reveal that they undergo two photon absorption, self-defocusing and hence greater third order nonlinear susceptibility χ 3 of order of 10 –8 esu encompasses the grown crystals in the development of opto-electronic devices and for the conversion of energy process.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-022-09699-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alanine ; Ammonia ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Conversion ; Crystal growth ; Crystals ; Cut off wavelength ; Defocusing ; Dielectric loss ; Differential thermal analysis ; Electronic devices ; Emission analysis ; Energy gap ; High power lasers ; Laser damage ; Materials Science ; Microhardness ; Neodymium lasers ; Nonlinear optics ; Optical and Electronic Materials ; Optical properties ; Optoelectronic devices ; Room temperature ; Semiconductor lasers ; Single crystals ; Thermal stability ; Vibration mode ; YAG lasers ; Yield point</subject><ispartof>Journal of materials science. Materials in electronics, 2023-02, Vol.34 (4), p.280, Article 280</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-e14a105249440714585ecb8395563e017abb547c0aa9d2d19f2b09fc84137bca3</cites><orcidid>0000-0002-9455-456X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-022-09699-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-022-09699-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Rani, A. Dilli</creatorcontrib><creatorcontrib>Kumari, C. Rathika Thaya</creatorcontrib><creatorcontrib>Nageshwari, M.</creatorcontrib><creatorcontrib>Sangeetha, P.</creatorcontrib><creatorcontrib>Vinitha, G.</creatorcontrib><creatorcontrib>Caroline, M. Lydia</creatorcontrib><creatorcontrib>Kumaresan, S.</creatorcontrib><title>Crystal growth and properties of pure L-alanine and boric acid doped L-alanine nonlinear optical single crystals for frequency conversion</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Frequency conversion materials such as pure and 5 wt % Boric acid doped L-alanine crystals are grown using the slow evaporation technique at room temperature. Single crystal XRD reported that the crystals formed attained the orthorhombic system of noncentrosymmetric space group P2 1 2 1 2 1 . FTIR analysis established the presence of groups such as COO − , NH 3 + , CH 2 , CH and boron (B) element from shift in vibrational modes of at lower frequency region is also confirmed by EDAX measurement. The UV–Vis spectral study predicted the cut-off wavelength for pure LA and boric acid doped LA at 245 nm and 238 nm and thereby energy gap, urbach energy were also evaluated. Vicker’s microhardness study categorized the harvested crystals as soft materials following RISE effect. The dielectric characterization such as dielectric constant and dielectric loss were studied at various temperature ranges. Jonscher’s power law verifies the conductivity mechanism with s = 0.988, 0.985 for pure LA and doped LA. Laser damage threshold study using an Nd:YAG laser (1064 nm) evinces the stability of the material to withstand high intensity lasers in NLO applications. The luminescence nature of crystals was investigated in the range 250–600 nm and confirmed violet emission radiation. TGA-DTA analysis showed that the crystals possess good thermal stability. Second harmonic generation (SHG) was examined from the emission of green light from the samples by Kurtz Perry technique. The Z-scan investigations on the crystals reveal that they undergo two photon absorption, self-defocusing and hence greater third order nonlinear susceptibility χ 3 of order of 10 –8 esu encompasses the grown crystals in the development of opto-electronic devices and for the conversion of energy process.</description><subject>Alanine</subject><subject>Ammonia</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Conversion</subject><subject>Crystal growth</subject><subject>Crystals</subject><subject>Cut off wavelength</subject><subject>Defocusing</subject><subject>Dielectric loss</subject><subject>Differential thermal analysis</subject><subject>Electronic devices</subject><subject>Emission analysis</subject><subject>Energy gap</subject><subject>High power lasers</subject><subject>Laser damage</subject><subject>Materials Science</subject><subject>Microhardness</subject><subject>Neodymium lasers</subject><subject>Nonlinear optics</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Optoelectronic devices</subject><subject>Room temperature</subject><subject>Semiconductor lasers</subject><subject>Single crystals</subject><subject>Thermal stability</subject><subject>Vibration mode</subject><subject>YAG lasers</subject><subject>Yield point</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwApwscTasHTuOj6jiT6rEBSRuluM4JVWwg52C-gi8NW6DBCdOe5hvZncHoXMKlxRAXiUKleAEGCOgSqUIHKAZFbIgvGIvh2gGSkjCBWPH6CSlNQCUvKhm6GsRt2k0PV7F8Dm-YuMbPMQwuDh2LuHQ4mETHV4S0xvfebcH6hA7i43tGtxktPkj--D7PE3EYRg7m4NT51e9w3bak3AbIm6je984b7fYBv_hYuqCP0VHbdbd2c-co-fbm6fFPVk-3j0srpfEMgkjcZQbCoJxxTlIykUlnK2rQglRFg6oNHUtuLRgjGpYQ1XLalCtrTgtZG1NMUcXU25-Mx-RRr0Om-jzSs1kmVNLUJApNlE2hpSia_UQuzcTt5qC3lWup8p1rlzvK9c7UzGZUob9ysXf6H9c3548hig</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Rani, A. Dilli</creator><creator>Kumari, C. Rathika Thaya</creator><creator>Nageshwari, M.</creator><creator>Sangeetha, P.</creator><creator>Vinitha, G.</creator><creator>Caroline, M. Lydia</creator><creator>Kumaresan, S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-9455-456X</orcidid></search><sort><creationdate>20230201</creationdate><title>Crystal growth and properties of pure L-alanine and boric acid doped L-alanine nonlinear optical single crystals for frequency conversion</title><author>Rani, A. Dilli ; Kumari, C. Rathika Thaya ; Nageshwari, M. ; Sangeetha, P. ; Vinitha, G. ; Caroline, M. Lydia ; Kumaresan, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e14a105249440714585ecb8395563e017abb547c0aa9d2d19f2b09fc84137bca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alanine</topic><topic>Ammonia</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Conversion</topic><topic>Crystal growth</topic><topic>Crystals</topic><topic>Cut off wavelength</topic><topic>Defocusing</topic><topic>Dielectric loss</topic><topic>Differential thermal analysis</topic><topic>Electronic devices</topic><topic>Emission analysis</topic><topic>Energy gap</topic><topic>High power lasers</topic><topic>Laser damage</topic><topic>Materials Science</topic><topic>Microhardness</topic><topic>Neodymium lasers</topic><topic>Nonlinear optics</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Optoelectronic devices</topic><topic>Room temperature</topic><topic>Semiconductor lasers</topic><topic>Single crystals</topic><topic>Thermal stability</topic><topic>Vibration mode</topic><topic>YAG lasers</topic><topic>Yield point</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rani, A. Dilli</creatorcontrib><creatorcontrib>Kumari, C. Rathika Thaya</creatorcontrib><creatorcontrib>Nageshwari, M.</creatorcontrib><creatorcontrib>Sangeetha, P.</creatorcontrib><creatorcontrib>Vinitha, G.</creatorcontrib><creatorcontrib>Caroline, M. Lydia</creatorcontrib><creatorcontrib>Kumaresan, S.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rani, A. Dilli</au><au>Kumari, C. Rathika Thaya</au><au>Nageshwari, M.</au><au>Sangeetha, P.</au><au>Vinitha, G.</au><au>Caroline, M. Lydia</au><au>Kumaresan, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal growth and properties of pure L-alanine and boric acid doped L-alanine nonlinear optical single crystals for frequency conversion</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>34</volume><issue>4</issue><spage>280</spage><pages>280-</pages><artnum>280</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Frequency conversion materials such as pure and 5 wt % Boric acid doped L-alanine crystals are grown using the slow evaporation technique at room temperature. Single crystal XRD reported that the crystals formed attained the orthorhombic system of noncentrosymmetric space group P2 1 2 1 2 1 . FTIR analysis established the presence of groups such as COO − , NH 3 + , CH 2 , CH and boron (B) element from shift in vibrational modes of at lower frequency region is also confirmed by EDAX measurement. The UV–Vis spectral study predicted the cut-off wavelength for pure LA and boric acid doped LA at 245 nm and 238 nm and thereby energy gap, urbach energy were also evaluated. Vicker’s microhardness study categorized the harvested crystals as soft materials following RISE effect. The dielectric characterization such as dielectric constant and dielectric loss were studied at various temperature ranges. Jonscher’s power law verifies the conductivity mechanism with s = 0.988, 0.985 for pure LA and doped LA. Laser damage threshold study using an Nd:YAG laser (1064 nm) evinces the stability of the material to withstand high intensity lasers in NLO applications. The luminescence nature of crystals was investigated in the range 250–600 nm and confirmed violet emission radiation. TGA-DTA analysis showed that the crystals possess good thermal stability. Second harmonic generation (SHG) was examined from the emission of green light from the samples by Kurtz Perry technique. The Z-scan investigations on the crystals reveal that they undergo two photon absorption, self-defocusing and hence greater third order nonlinear susceptibility χ 3 of order of 10 –8 esu encompasses the grown crystals in the development of opto-electronic devices and for the conversion of energy process.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-022-09699-0</doi><orcidid>https://orcid.org/0000-0002-9455-456X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2023-02, Vol.34 (4), p.280, Article 280
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2769446090
source SpringerNature Journals
subjects Alanine
Ammonia
Characterization and Evaluation of Materials
Chemistry and Materials Science
Conversion
Crystal growth
Crystals
Cut off wavelength
Defocusing
Dielectric loss
Differential thermal analysis
Electronic devices
Emission analysis
Energy gap
High power lasers
Laser damage
Materials Science
Microhardness
Neodymium lasers
Nonlinear optics
Optical and Electronic Materials
Optical properties
Optoelectronic devices
Room temperature
Semiconductor lasers
Single crystals
Thermal stability
Vibration mode
YAG lasers
Yield point
title Crystal growth and properties of pure L-alanine and boric acid doped L-alanine nonlinear optical single crystals for frequency conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A33%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20growth%20and%20properties%20of%20pure%20L-alanine%20and%20boric%20acid%20doped%20L-alanine%20nonlinear%20optical%20single%20crystals%20for%20frequency%20conversion&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Rani,%20A.%20Dilli&rft.date=2023-02-01&rft.volume=34&rft.issue=4&rft.spage=280&rft.pages=280-&rft.artnum=280&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-022-09699-0&rft_dat=%3Cproquest_cross%3E2769446090%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769446090&rft_id=info:pmid/&rfr_iscdi=true