Cadmium sulphide-sensitized zirconium dioxide (ZrO2) photoanode by successive ionic layer adsorption and reaction for solar cell application

In the present study, cadmium sulphide (CdS) quantum dot-sensitized ZrO 2 photoanodes have been analysed by using the facial and cost-effective method, popularly known as successive ionic layer adsorption and reaction (SILAR), performed at 300 K. The presence of compact layer and ZnS treatment of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2023-02, Vol.34 (4), p.303, Article 303
Hauptverfasser: Prasad, Bikram, Chougale, Akanksha S., Jadkar, Sandesh R., Naik, Nithesh, Pathan, Habib M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 303
container_title Journal of materials science. Materials in electronics
container_volume 34
creator Prasad, Bikram
Chougale, Akanksha S.
Jadkar, Sandesh R.
Naik, Nithesh
Pathan, Habib M.
description In the present study, cadmium sulphide (CdS) quantum dot-sensitized ZrO 2 photoanodes have been analysed by using the facial and cost-effective method, popularly known as successive ionic layer adsorption and reaction (SILAR), performed at 300 K. The presence of compact layer and ZnS treatment of the as-prepared photoanode is studied in this article to improve the solar cell parameters. The X-ray diffraction peaks infer the nano-crystalline nature of ZrO 2 films with an average particle size of 39.14 nm. The CdS-sensitized ZrO 2 films show a significant increase in absorption of photons in the visible region (i.e., 200 to 520 nm) of the absorption spectrum, as we have increased the number of SILAR cycles. Poly-sulphide electrolytes have been prepared in double distilled water and carbon black soot on conducting substrate is used as a counter electrode to be economical. The J – V characteristic of 10 CdS/ZrO 2 with a compact layer of TiO 2 with surface passivation (ZnS) treatment gives the maximum J sc of 1.46 mA/cm 2 with a fill factor of 0.34 and conversion efficiency of 0.46%. Electrochemical impedance spectroscopy of the quantum dot-sensitized solar cell is studied to understand the kinetics of charge transfer and transport processes mechanisms involved.
doi_str_mv 10.1007/s10854-022-09681-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2769444996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2769444996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f506637924cdff303d7f5da08480517c0568f43d115af08187cb909622f7fd763</originalsourceid><addsrcrecordid>eNp9kEtLXDEUx4NYcGr9Aq4CbtpF7MnrJndZBl8guGmhdBNiHhq5c3Ob3KkdP4Mf2owjuHN1OOf_OPBD6JjCKQVQ3ysFLQUBxgj0nabkcQ8tqFScCM1-76MF9FIRIRk7QJ9rfQCATnC9QM9L61dpvcJ1PUz3yQdSw1jTnJ6Cx0-puDxuVZ_y_ybir3_KDfuGp_s8ZzvmdrndtKhzodb0L-DU7A4PdhMKtr7mMs3thO3ocQnWvS4xF1zzYAt2YRiwnaYhObuVvqBP0Q41HL3NQ_Tr_Ozn8pJc31xcLX9cE8d6PpMooeu46plwPkYO3KsovQUtNEiqHMhOR8E9pdJG0FQrd9s3LIxFFb3q-CE62fVOJf9dhzqbh7wuY3tpmOp6IUTfb11s53Il11pCNFNJK1s2hoLZUjc76qZRN6_UzWML8V2oNvN4F8p79QepF4pUiDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769444996</pqid></control><display><type>article</type><title>Cadmium sulphide-sensitized zirconium dioxide (ZrO2) photoanode by successive ionic layer adsorption and reaction for solar cell application</title><source>SpringerLink Journals - AutoHoldings</source><creator>Prasad, Bikram ; Chougale, Akanksha S. ; Jadkar, Sandesh R. ; Naik, Nithesh ; Pathan, Habib M.</creator><creatorcontrib>Prasad, Bikram ; Chougale, Akanksha S. ; Jadkar, Sandesh R. ; Naik, Nithesh ; Pathan, Habib M.</creatorcontrib><description>In the present study, cadmium sulphide (CdS) quantum dot-sensitized ZrO 2 photoanodes have been analysed by using the facial and cost-effective method, popularly known as successive ionic layer adsorption and reaction (SILAR), performed at 300 K. The presence of compact layer and ZnS treatment of the as-prepared photoanode is studied in this article to improve the solar cell parameters. The X-ray diffraction peaks infer the nano-crystalline nature of ZrO 2 films with an average particle size of 39.14 nm. The CdS-sensitized ZrO 2 films show a significant increase in absorption of photons in the visible region (i.e., 200 to 520 nm) of the absorption spectrum, as we have increased the number of SILAR cycles. Poly-sulphide electrolytes have been prepared in double distilled water and carbon black soot on conducting substrate is used as a counter electrode to be economical. The J – V characteristic of 10 CdS/ZrO 2 with a compact layer of TiO 2 with surface passivation (ZnS) treatment gives the maximum J sc of 1.46 mA/cm 2 with a fill factor of 0.34 and conversion efficiency of 0.46%. Electrochemical impedance spectroscopy of the quantum dot-sensitized solar cell is studied to understand the kinetics of charge transfer and transport processes mechanisms involved.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-022-09681-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorption spectra ; Adsorption ; Cadmium sulfide ; Carbon black ; Characterization and Evaluation of Materials ; Charge transfer ; Chemistry and Materials Science ; Cost analysis ; Distilled water ; Electrochemical impedance spectroscopy ; Electrolytes ; Materials Science ; Optical and Electronic Materials ; Photoanodes ; Photon absorption ; Photovoltaic cells ; Quantum dots ; Solar cells ; Soot ; Substrates ; Titanium dioxide ; Zinc sulfide ; Zirconium dioxide</subject><ispartof>Journal of materials science. Materials in electronics, 2023-02, Vol.34 (4), p.303, Article 303</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f506637924cdff303d7f5da08480517c0568f43d115af08187cb909622f7fd763</citedby><cites>FETCH-LOGICAL-c293t-f506637924cdff303d7f5da08480517c0568f43d115af08187cb909622f7fd763</cites><orcidid>0000-0003-0356-7697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-022-09681-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-022-09681-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Prasad, Bikram</creatorcontrib><creatorcontrib>Chougale, Akanksha S.</creatorcontrib><creatorcontrib>Jadkar, Sandesh R.</creatorcontrib><creatorcontrib>Naik, Nithesh</creatorcontrib><creatorcontrib>Pathan, Habib M.</creatorcontrib><title>Cadmium sulphide-sensitized zirconium dioxide (ZrO2) photoanode by successive ionic layer adsorption and reaction for solar cell application</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In the present study, cadmium sulphide (CdS) quantum dot-sensitized ZrO 2 photoanodes have been analysed by using the facial and cost-effective method, popularly known as successive ionic layer adsorption and reaction (SILAR), performed at 300 K. The presence of compact layer and ZnS treatment of the as-prepared photoanode is studied in this article to improve the solar cell parameters. The X-ray diffraction peaks infer the nano-crystalline nature of ZrO 2 films with an average particle size of 39.14 nm. The CdS-sensitized ZrO 2 films show a significant increase in absorption of photons in the visible region (i.e., 200 to 520 nm) of the absorption spectrum, as we have increased the number of SILAR cycles. Poly-sulphide electrolytes have been prepared in double distilled water and carbon black soot on conducting substrate is used as a counter electrode to be economical. The J – V characteristic of 10 CdS/ZrO 2 with a compact layer of TiO 2 with surface passivation (ZnS) treatment gives the maximum J sc of 1.46 mA/cm 2 with a fill factor of 0.34 and conversion efficiency of 0.46%. Electrochemical impedance spectroscopy of the quantum dot-sensitized solar cell is studied to understand the kinetics of charge transfer and transport processes mechanisms involved.</description><subject>Absorption spectra</subject><subject>Adsorption</subject><subject>Cadmium sulfide</subject><subject>Carbon black</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Cost analysis</subject><subject>Distilled water</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrolytes</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Photoanodes</subject><subject>Photon absorption</subject><subject>Photovoltaic cells</subject><subject>Quantum dots</subject><subject>Solar cells</subject><subject>Soot</subject><subject>Substrates</subject><subject>Titanium dioxide</subject><subject>Zinc sulfide</subject><subject>Zirconium dioxide</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLXDEUx4NYcGr9Aq4CbtpF7MnrJndZBl8guGmhdBNiHhq5c3Ob3KkdP4Mf2owjuHN1OOf_OPBD6JjCKQVQ3ysFLQUBxgj0nabkcQ8tqFScCM1-76MF9FIRIRk7QJ9rfQCATnC9QM9L61dpvcJ1PUz3yQdSw1jTnJ6Cx0-puDxuVZ_y_ybir3_KDfuGp_s8ZzvmdrndtKhzodb0L-DU7A4PdhMKtr7mMs3thO3ocQnWvS4xF1zzYAt2YRiwnaYhObuVvqBP0Q41HL3NQ_Tr_Ozn8pJc31xcLX9cE8d6PpMooeu46plwPkYO3KsovQUtNEiqHMhOR8E9pdJG0FQrd9s3LIxFFb3q-CE62fVOJf9dhzqbh7wuY3tpmOp6IUTfb11s53Il11pCNFNJK1s2hoLZUjc76qZRN6_UzWML8V2oNvN4F8p79QepF4pUiDM</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Prasad, Bikram</creator><creator>Chougale, Akanksha S.</creator><creator>Jadkar, Sandesh R.</creator><creator>Naik, Nithesh</creator><creator>Pathan, Habib M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-0356-7697</orcidid></search><sort><creationdate>20230201</creationdate><title>Cadmium sulphide-sensitized zirconium dioxide (ZrO2) photoanode by successive ionic layer adsorption and reaction for solar cell application</title><author>Prasad, Bikram ; Chougale, Akanksha S. ; Jadkar, Sandesh R. ; Naik, Nithesh ; Pathan, Habib M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f506637924cdff303d7f5da08480517c0568f43d115af08187cb909622f7fd763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption spectra</topic><topic>Adsorption</topic><topic>Cadmium sulfide</topic><topic>Carbon black</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Cost analysis</topic><topic>Distilled water</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrolytes</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Photoanodes</topic><topic>Photon absorption</topic><topic>Photovoltaic cells</topic><topic>Quantum dots</topic><topic>Solar cells</topic><topic>Soot</topic><topic>Substrates</topic><topic>Titanium dioxide</topic><topic>Zinc sulfide</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasad, Bikram</creatorcontrib><creatorcontrib>Chougale, Akanksha S.</creatorcontrib><creatorcontrib>Jadkar, Sandesh R.</creatorcontrib><creatorcontrib>Naik, Nithesh</creatorcontrib><creatorcontrib>Pathan, Habib M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasad, Bikram</au><au>Chougale, Akanksha S.</au><au>Jadkar, Sandesh R.</au><au>Naik, Nithesh</au><au>Pathan, Habib M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cadmium sulphide-sensitized zirconium dioxide (ZrO2) photoanode by successive ionic layer adsorption and reaction for solar cell application</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>34</volume><issue>4</issue><spage>303</spage><pages>303-</pages><artnum>303</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In the present study, cadmium sulphide (CdS) quantum dot-sensitized ZrO 2 photoanodes have been analysed by using the facial and cost-effective method, popularly known as successive ionic layer adsorption and reaction (SILAR), performed at 300 K. The presence of compact layer and ZnS treatment of the as-prepared photoanode is studied in this article to improve the solar cell parameters. The X-ray diffraction peaks infer the nano-crystalline nature of ZrO 2 films with an average particle size of 39.14 nm. The CdS-sensitized ZrO 2 films show a significant increase in absorption of photons in the visible region (i.e., 200 to 520 nm) of the absorption spectrum, as we have increased the number of SILAR cycles. Poly-sulphide electrolytes have been prepared in double distilled water and carbon black soot on conducting substrate is used as a counter electrode to be economical. The J – V characteristic of 10 CdS/ZrO 2 with a compact layer of TiO 2 with surface passivation (ZnS) treatment gives the maximum J sc of 1.46 mA/cm 2 with a fill factor of 0.34 and conversion efficiency of 0.46%. Electrochemical impedance spectroscopy of the quantum dot-sensitized solar cell is studied to understand the kinetics of charge transfer and transport processes mechanisms involved.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-022-09681-w</doi><orcidid>https://orcid.org/0000-0003-0356-7697</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2023-02, Vol.34 (4), p.303, Article 303
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2769444996
source SpringerLink Journals - AutoHoldings
subjects Absorption spectra
Adsorption
Cadmium sulfide
Carbon black
Characterization and Evaluation of Materials
Charge transfer
Chemistry and Materials Science
Cost analysis
Distilled water
Electrochemical impedance spectroscopy
Electrolytes
Materials Science
Optical and Electronic Materials
Photoanodes
Photon absorption
Photovoltaic cells
Quantum dots
Solar cells
Soot
Substrates
Titanium dioxide
Zinc sulfide
Zirconium dioxide
title Cadmium sulphide-sensitized zirconium dioxide (ZrO2) photoanode by successive ionic layer adsorption and reaction for solar cell application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A07%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cadmium%20sulphide-sensitized%20zirconium%20dioxide%20(ZrO2)%20photoanode%20by%20successive%20ionic%20layer%20adsorption%20and%20reaction%20for%20solar%20cell%20application&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Prasad,%20Bikram&rft.date=2023-02-01&rft.volume=34&rft.issue=4&rft.spage=303&rft.pages=303-&rft.artnum=303&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-022-09681-w&rft_dat=%3Cproquest_cross%3E2769444996%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769444996&rft_id=info:pmid/&rfr_iscdi=true