Y2O3-Based Crossbar Array for Analog and Neuromorphic Computation

Here, we report an implementation of ( 8\times8 ) \text{Y}_{{2}}\text{O}_{{3}} -based memristive crossbar array (MCA) out of a total dimension of ( 30\times25 ) array fabricated by utilizing a dual ion beam sputtering (DIBS) system. The selected ( 8\times8 ) MCA is further used to electrically writ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2023-02, Vol.70 (2), p.473-477
Hauptverfasser: Kumar, Sanjay, Kumbhar, Dhananjay D., Park, Jun H., Kamat, Rajanish K., Dongale, Tukaram D., Mukherjee, Shaibal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 477
container_issue 2
container_start_page 473
container_title IEEE transactions on electron devices
container_volume 70
creator Kumar, Sanjay
Kumbhar, Dhananjay D.
Park, Jun H.
Kamat, Rajanish K.
Dongale, Tukaram D.
Mukherjee, Shaibal
description Here, we report an implementation of ( 8\times8 ) \text{Y}_{{2}}\text{O}_{{3}} -based memristive crossbar array (MCA) out of a total dimension of ( 30\times25 ) array fabricated by utilizing a dual ion beam sputtering (DIBS) system. The selected ( 8\times8 ) MCA is further used to electrically write random alphabets and perform synaptic learning characteristics to perform analog and neuromorphic computing applications. The MCA effectively exhibits multiple current levels and mimics various artificial synaptic properties with superior bidirectional switching responses. The MCA mimics potentiation, depression, and different Hebbian learning-based spike-time-dependent plasticity rules, suggesting the importance of the \text{Y}_{{2}}\text{O}_{{3}} -based MCA for large-scale neuromorphic and analog computations. This work provides different insights into the design of an artificial synapse by utilizing \text{Y}_{{2}}\text{O}_{{3}} as a switching oxide in memristors.
doi_str_mv 10.1109/TED.2022.3227890
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2769391149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9992225</ieee_id><sourcerecordid>2769391149</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-40334212abcf021ee93e36fef8fc1ffabcbdd511a11b867ac6631cb49ddf989f3</originalsourceid><addsrcrecordid>eNotjjtPwzAUhS0EEqWwI7FEYk7xvddxcscSykOq6FIGpshJbEjV1sFOBv49kcp0Hvp0dIS4BbkAkPywXT0tUCIuCDEvWJ6JGWRZnrJW-lzMpIQiZSroUlzFuJuiVgpnYvmJG0ofTbRtUgYfY21CsgzB_CbOT-5o9v4rMcc2ebdj8Acf-u-uSUp_6MfBDJ0_XosLZ_bR3vzrXHw8r7bla7revLyVy3XaoaQhVZJIIaCpGycRrGWypJ11hWvAuamu2zYDMAB1oXPTaE3Q1Irb1nHBjubi_rTbB_8z2jhUOz-G6V-sMNdMDKB4ou5OVGetrfrQHUz4rZgZETP6A1f2VKk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769391149</pqid></control><display><type>article</type><title>Y2O3-Based Crossbar Array for Analog and Neuromorphic Computation</title><source>IEEE Electronic Library (IEL)</source><creator>Kumar, Sanjay ; Kumbhar, Dhananjay D. ; Park, Jun H. ; Kamat, Rajanish K. ; Dongale, Tukaram D. ; Mukherjee, Shaibal</creator><creatorcontrib>Kumar, Sanjay ; Kumbhar, Dhananjay D. ; Park, Jun H. ; Kamat, Rajanish K. ; Dongale, Tukaram D. ; Mukherjee, Shaibal</creatorcontrib><description><![CDATA[Here, we report an implementation of (<inline-formula> <tex-math notation="LaTeX">8\times8 </tex-math></inline-formula>) <inline-formula> <tex-math notation="LaTeX">\text{Y}_{{2}}\text{O}_{{3}} </tex-math></inline-formula>-based memristive crossbar array (MCA) out of a total dimension of (<inline-formula> <tex-math notation="LaTeX">30\times25 </tex-math></inline-formula>) array fabricated by utilizing a dual ion beam sputtering (DIBS) system. The selected (<inline-formula> <tex-math notation="LaTeX">8\times8 </tex-math></inline-formula>) MCA is further used to electrically write random alphabets and perform synaptic learning characteristics to perform analog and neuromorphic computing applications. The MCA effectively exhibits multiple current levels and mimics various artificial synaptic properties with superior bidirectional switching responses. The MCA mimics potentiation, depression, and different Hebbian learning-based spike-time-dependent plasticity rules, suggesting the importance of the <inline-formula> <tex-math notation="LaTeX">\text{Y}_{{2}}\text{O}_{{3}} </tex-math></inline-formula>-based MCA for large-scale neuromorphic and analog computations. This work provides different insights into the design of an artificial synapse by utilizing <inline-formula> <tex-math notation="LaTeX">\text{Y}_{{2}}\text{O}_{{3}} </tex-math></inline-formula> as a switching oxide in memristors.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3227890</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arrays ; Artificial synapse ; crossbar ; Depression ; Ion beam sputtering ; Learning ; Memristors ; neuromorphic computation ; Neuromorphic computing ; Neuromorphics ; spike-time-dependent plasticity (STDP) ; Switches ; Switching ; Synapses ; Voltage ; Writing ; Yttrium oxide ; Y₂O</subject><ispartof>IEEE transactions on electron devices, 2023-02, Vol.70 (2), p.473-477</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9879-7278 ; 0000-0002-5770-9665 ; 0000-0001-5138-1622 ; 0000-0003-2536-6132 ; 0000-0001-5382-2006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9992225$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9992225$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kumar, Sanjay</creatorcontrib><creatorcontrib>Kumbhar, Dhananjay D.</creatorcontrib><creatorcontrib>Park, Jun H.</creatorcontrib><creatorcontrib>Kamat, Rajanish K.</creatorcontrib><creatorcontrib>Dongale, Tukaram D.</creatorcontrib><creatorcontrib>Mukherjee, Shaibal</creatorcontrib><title>Y2O3-Based Crossbar Array for Analog and Neuromorphic Computation</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[Here, we report an implementation of (<inline-formula> <tex-math notation="LaTeX">8\times8 </tex-math></inline-formula>) <inline-formula> <tex-math notation="LaTeX">\text{Y}_{{2}}\text{O}_{{3}} </tex-math></inline-formula>-based memristive crossbar array (MCA) out of a total dimension of (<inline-formula> <tex-math notation="LaTeX">30\times25 </tex-math></inline-formula>) array fabricated by utilizing a dual ion beam sputtering (DIBS) system. The selected (<inline-formula> <tex-math notation="LaTeX">8\times8 </tex-math></inline-formula>) MCA is further used to electrically write random alphabets and perform synaptic learning characteristics to perform analog and neuromorphic computing applications. The MCA effectively exhibits multiple current levels and mimics various artificial synaptic properties with superior bidirectional switching responses. The MCA mimics potentiation, depression, and different Hebbian learning-based spike-time-dependent plasticity rules, suggesting the importance of the <inline-formula> <tex-math notation="LaTeX">\text{Y}_{{2}}\text{O}_{{3}} </tex-math></inline-formula>-based MCA for large-scale neuromorphic and analog computations. This work provides different insights into the design of an artificial synapse by utilizing <inline-formula> <tex-math notation="LaTeX">\text{Y}_{{2}}\text{O}_{{3}} </tex-math></inline-formula> as a switching oxide in memristors.]]></description><subject>Arrays</subject><subject>Artificial synapse</subject><subject>crossbar</subject><subject>Depression</subject><subject>Ion beam sputtering</subject><subject>Learning</subject><subject>Memristors</subject><subject>neuromorphic computation</subject><subject>Neuromorphic computing</subject><subject>Neuromorphics</subject><subject>spike-time-dependent plasticity (STDP)</subject><subject>Switches</subject><subject>Switching</subject><subject>Synapses</subject><subject>Voltage</subject><subject>Writing</subject><subject>Yttrium oxide</subject><subject>Y₂O</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjjtPwzAUhS0EEqWwI7FEYk7xvddxcscSykOq6FIGpshJbEjV1sFOBv49kcp0Hvp0dIS4BbkAkPywXT0tUCIuCDEvWJ6JGWRZnrJW-lzMpIQiZSroUlzFuJuiVgpnYvmJG0ofTbRtUgYfY21CsgzB_CbOT-5o9v4rMcc2ebdj8Acf-u-uSUp_6MfBDJ0_XosLZ_bR3vzrXHw8r7bla7revLyVy3XaoaQhVZJIIaCpGycRrGWypJ11hWvAuamu2zYDMAB1oXPTaE3Q1Irb1nHBjubi_rTbB_8z2jhUOz-G6V-sMNdMDKB4ou5OVGetrfrQHUz4rZgZETP6A1f2VKk</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Kumar, Sanjay</creator><creator>Kumbhar, Dhananjay D.</creator><creator>Park, Jun H.</creator><creator>Kamat, Rajanish K.</creator><creator>Dongale, Tukaram D.</creator><creator>Mukherjee, Shaibal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9879-7278</orcidid><orcidid>https://orcid.org/0000-0002-5770-9665</orcidid><orcidid>https://orcid.org/0000-0001-5138-1622</orcidid><orcidid>https://orcid.org/0000-0003-2536-6132</orcidid><orcidid>https://orcid.org/0000-0001-5382-2006</orcidid></search><sort><creationdate>20230201</creationdate><title>Y2O3-Based Crossbar Array for Analog and Neuromorphic Computation</title><author>Kumar, Sanjay ; Kumbhar, Dhananjay D. ; Park, Jun H. ; Kamat, Rajanish K. ; Dongale, Tukaram D. ; Mukherjee, Shaibal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-40334212abcf021ee93e36fef8fc1ffabcbdd511a11b867ac6631cb49ddf989f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arrays</topic><topic>Artificial synapse</topic><topic>crossbar</topic><topic>Depression</topic><topic>Ion beam sputtering</topic><topic>Learning</topic><topic>Memristors</topic><topic>neuromorphic computation</topic><topic>Neuromorphic computing</topic><topic>Neuromorphics</topic><topic>spike-time-dependent plasticity (STDP)</topic><topic>Switches</topic><topic>Switching</topic><topic>Synapses</topic><topic>Voltage</topic><topic>Writing</topic><topic>Yttrium oxide</topic><topic>Y₂O</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Sanjay</creatorcontrib><creatorcontrib>Kumbhar, Dhananjay D.</creatorcontrib><creatorcontrib>Park, Jun H.</creatorcontrib><creatorcontrib>Kamat, Rajanish K.</creatorcontrib><creatorcontrib>Dongale, Tukaram D.</creatorcontrib><creatorcontrib>Mukherjee, Shaibal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kumar, Sanjay</au><au>Kumbhar, Dhananjay D.</au><au>Park, Jun H.</au><au>Kamat, Rajanish K.</au><au>Dongale, Tukaram D.</au><au>Mukherjee, Shaibal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Y2O3-Based Crossbar Array for Analog and Neuromorphic Computation</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>70</volume><issue>2</issue><spage>473</spage><epage>477</epage><pages>473-477</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[Here, we report an implementation of (<inline-formula> <tex-math notation="LaTeX">8\times8 </tex-math></inline-formula>) <inline-formula> <tex-math notation="LaTeX">\text{Y}_{{2}}\text{O}_{{3}} </tex-math></inline-formula>-based memristive crossbar array (MCA) out of a total dimension of (<inline-formula> <tex-math notation="LaTeX">30\times25 </tex-math></inline-formula>) array fabricated by utilizing a dual ion beam sputtering (DIBS) system. The selected (<inline-formula> <tex-math notation="LaTeX">8\times8 </tex-math></inline-formula>) MCA is further used to electrically write random alphabets and perform synaptic learning characteristics to perform analog and neuromorphic computing applications. The MCA effectively exhibits multiple current levels and mimics various artificial synaptic properties with superior bidirectional switching responses. The MCA mimics potentiation, depression, and different Hebbian learning-based spike-time-dependent plasticity rules, suggesting the importance of the <inline-formula> <tex-math notation="LaTeX">\text{Y}_{{2}}\text{O}_{{3}} </tex-math></inline-formula>-based MCA for large-scale neuromorphic and analog computations. This work provides different insights into the design of an artificial synapse by utilizing <inline-formula> <tex-math notation="LaTeX">\text{Y}_{{2}}\text{O}_{{3}} </tex-math></inline-formula> as a switching oxide in memristors.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3227890</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9879-7278</orcidid><orcidid>https://orcid.org/0000-0002-5770-9665</orcidid><orcidid>https://orcid.org/0000-0001-5138-1622</orcidid><orcidid>https://orcid.org/0000-0003-2536-6132</orcidid><orcidid>https://orcid.org/0000-0001-5382-2006</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2023-02, Vol.70 (2), p.473-477
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2769391149
source IEEE Electronic Library (IEL)
subjects Arrays
Artificial synapse
crossbar
Depression
Ion beam sputtering
Learning
Memristors
neuromorphic computation
Neuromorphic computing
Neuromorphics
spike-time-dependent plasticity (STDP)
Switches
Switching
Synapses
Voltage
Writing
Yttrium oxide
Y₂O
title Y2O3-Based Crossbar Array for Analog and Neuromorphic Computation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Y2O3-Based%20Crossbar%20Array%20for%20Analog%20and%20Neuromorphic%20Computation&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Kumar,%20Sanjay&rft.date=2023-02-01&rft.volume=70&rft.issue=2&rft.spage=473&rft.epage=477&rft.pages=473-477&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3227890&rft_dat=%3Cproquest_RIE%3E2769391149%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769391149&rft_id=info:pmid/&rft_ieee_id=9992225&rfr_iscdi=true