Malicious Node Detection using Machine Learning and Distributed Data Storage using Blockchain in WSNs
In the proposed work, blockchain is implemented on the Base Stations (BSs) and Cluster Heads (CHs) to register the nodes using their credentials and also to tackle various security issues. Moreover, a Machine Learning (ML) classifier, termed as Histogram Gradient Boost (HGB), is employed on the BSs...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Nouman, Muhammad Qasim, Umar Nasir, Hina Almasoud, Abdullah Imran, Muhammad Javaid, Nadeem |
description | In the proposed work, blockchain is implemented on the Base Stations (BSs) and Cluster Heads (CHs) to register the nodes using their credentials and also to tackle various security issues. Moreover, a Machine Learning (ML) classifier, termed as Histogram Gradient Boost (HGB), is employed on the BSs to classify the nodes as malicious or legitimate. In case, the node is found to be malicious, its registration is revoked from the network. Whereas, if a node is found to be legitimate, then its data is stored in an Interplanetary File System (IPFS). IPFS stores the data in the form of chunks and generates hash for the data, which is then stored in blockchain. In addition, Verifiable Byzantine Fault Tolerance (VBFT) is used instead of Proof of Work (PoW) to perform consensus and validate transactions. Also, extensive simulations are performed using the Wireless Sensor Network (WSN) dataset, referred as WSN-DS. The proposed model is evaluated both on the original dataset and the balanced dataset. Furthermore, HGB is compared with other existing classifiers, Adaptive Boost (AdaBoost), Gradient Boost (GB), Linear Discriminant Analysis (LDA), Extreme Gradient Boost (XGB) and ridge, using different performance metrics like accuracy, precision, recall, micro-F1 score and macro-F1 score. The performance evaluation of HGB shows that it outperforms GB, AdaBoost, LDA, XGB and Ridge by 2-4%, 8-10%, 12-14%, 3-5% and 14-16%, respectively. Moreover, the results with balanced dataset are better than those with original dataset. Also, VBFT performs 20-30% better than PoW. Overall, the proposed model performs efficiently in terms of malicious node detection and secure data storage. |
doi_str_mv | 10.1109/ACCESS.2023.3236983 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2769390853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10017247</ieee_id><doaj_id>oai_doaj_org_article_b57eedd48ca743f888ac0a67bb0d9e52</doaj_id><sourcerecordid>2769390853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-6bd2c2be0834d82e199c0cdc01ac17e95d5feb0806fcffbf9ab4a3c3d73a9d383</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNSWFhiS_oD0Yet6tPmxLOqabjwY26WFbehSj0Xij7dZKJPmQf19vvIQMA_N4zHsz8KrqM2dLzpn5drlaXW82S8GEXEohO6Plh-pU8M4sZCu7k3f4U3WR845NpSeqVacV3cM-YIhjrh-ip_qKCmEJcajHHIZtfQ_4GAaq1wRpOBAw-Poq5JKCGwtNGArUmxITbOmo-b6P-BcfIQz11H82D_m8-tjDPtPFcZ5Vv2-uf61-LNY_b-9Wl-sFNsyURee8QOGIadl4LYgbgww9Mg7IFZnWtz05plnXY9-73oBrQKL0SoLxUsuz6m729RF29imFf5BebIRgX4mYthZSCbgn61pF5H2jEVQje601IINOOce8oVZMXl9nr6cUn0fKxe7imIbpfStUZ6RhupXTlpy3MMWcE_VvVzmzh3jsHI89xGOP8UyqL7MqENE7BeNKNEr-B5A4jP4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769390853</pqid></control><display><type>article</type><title>Malicious Node Detection using Machine Learning and Distributed Data Storage using Blockchain in WSNs</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Nouman, Muhammad ; Qasim, Umar ; Nasir, Hina ; Almasoud, Abdullah ; Imran, Muhammad ; Javaid, Nadeem</creator><creatorcontrib>Nouman, Muhammad ; Qasim, Umar ; Nasir, Hina ; Almasoud, Abdullah ; Imran, Muhammad ; Javaid, Nadeem</creatorcontrib><description>In the proposed work, blockchain is implemented on the Base Stations (BSs) and Cluster Heads (CHs) to register the nodes using their credentials and also to tackle various security issues. Moreover, a Machine Learning (ML) classifier, termed as Histogram Gradient Boost (HGB), is employed on the BSs to classify the nodes as malicious or legitimate. In case, the node is found to be malicious, its registration is revoked from the network. Whereas, if a node is found to be legitimate, then its data is stored in an Interplanetary File System (IPFS). IPFS stores the data in the form of chunks and generates hash for the data, which is then stored in blockchain. In addition, Verifiable Byzantine Fault Tolerance (VBFT) is used instead of Proof of Work (PoW) to perform consensus and validate transactions. Also, extensive simulations are performed using the Wireless Sensor Network (WSN) dataset, referred as WSN-DS. The proposed model is evaluated both on the original dataset and the balanced dataset. Furthermore, HGB is compared with other existing classifiers, Adaptive Boost (AdaBoost), Gradient Boost (GB), Linear Discriminant Analysis (LDA), Extreme Gradient Boost (XGB) and ridge, using different performance metrics like accuracy, precision, recall, micro-F1 score and macro-F1 score. The performance evaluation of HGB shows that it outperforms GB, AdaBoost, LDA, XGB and Ridge by 2-4%, 8-10%, 12-14%, 3-5% and 14-16%, respectively. Moreover, the results with balanced dataset are better than those with original dataset. Also, VBFT performs 20-30% better than PoW. Overall, the proposed model performs efficiently in terms of malicious node detection and secure data storage.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3236983</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Authentication ; Blockchain ; Blockchains ; Classifiers ; Cryptography ; Data models ; Data storage ; Datasets ; Discriminant analysis ; Fault tolerance ; Histogram Gradient Boost ; Histograms ; Internet of Things ; IPFS ; Machine learning ; Malicious Node Detection ; Nodes ; Performance evaluation ; Performance measurement ; Routing ; Security ; VBFT ; Wireless sensor networks ; WSN</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-6bd2c2be0834d82e199c0cdc01ac17e95d5feb0806fcffbf9ab4a3c3d73a9d383</citedby><cites>FETCH-LOGICAL-c409t-6bd2c2be0834d82e199c0cdc01ac17e95d5feb0806fcffbf9ab4a3c3d73a9d383</cites><orcidid>0000-0002-9805-970X ; 0000-0002-6946-2591 ; 0000-0003-3777-8249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10017247$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Nouman, Muhammad</creatorcontrib><creatorcontrib>Qasim, Umar</creatorcontrib><creatorcontrib>Nasir, Hina</creatorcontrib><creatorcontrib>Almasoud, Abdullah</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Javaid, Nadeem</creatorcontrib><title>Malicious Node Detection using Machine Learning and Distributed Data Storage using Blockchain in WSNs</title><title>IEEE access</title><addtitle>Access</addtitle><description>In the proposed work, blockchain is implemented on the Base Stations (BSs) and Cluster Heads (CHs) to register the nodes using their credentials and also to tackle various security issues. Moreover, a Machine Learning (ML) classifier, termed as Histogram Gradient Boost (HGB), is employed on the BSs to classify the nodes as malicious or legitimate. In case, the node is found to be malicious, its registration is revoked from the network. Whereas, if a node is found to be legitimate, then its data is stored in an Interplanetary File System (IPFS). IPFS stores the data in the form of chunks and generates hash for the data, which is then stored in blockchain. In addition, Verifiable Byzantine Fault Tolerance (VBFT) is used instead of Proof of Work (PoW) to perform consensus and validate transactions. Also, extensive simulations are performed using the Wireless Sensor Network (WSN) dataset, referred as WSN-DS. The proposed model is evaluated both on the original dataset and the balanced dataset. Furthermore, HGB is compared with other existing classifiers, Adaptive Boost (AdaBoost), Gradient Boost (GB), Linear Discriminant Analysis (LDA), Extreme Gradient Boost (XGB) and ridge, using different performance metrics like accuracy, precision, recall, micro-F1 score and macro-F1 score. The performance evaluation of HGB shows that it outperforms GB, AdaBoost, LDA, XGB and Ridge by 2-4%, 8-10%, 12-14%, 3-5% and 14-16%, respectively. Moreover, the results with balanced dataset are better than those with original dataset. Also, VBFT performs 20-30% better than PoW. Overall, the proposed model performs efficiently in terms of malicious node detection and secure data storage.</description><subject>Authentication</subject><subject>Blockchain</subject><subject>Blockchains</subject><subject>Classifiers</subject><subject>Cryptography</subject><subject>Data models</subject><subject>Data storage</subject><subject>Datasets</subject><subject>Discriminant analysis</subject><subject>Fault tolerance</subject><subject>Histogram Gradient Boost</subject><subject>Histograms</subject><subject>Internet of Things</subject><subject>IPFS</subject><subject>Machine learning</subject><subject>Malicious Node Detection</subject><subject>Nodes</subject><subject>Performance evaluation</subject><subject>Performance measurement</subject><subject>Routing</subject><subject>Security</subject><subject>VBFT</subject><subject>Wireless sensor networks</subject><subject>WSN</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNSWFhiS_oD0Yet6tPmxLOqabjwY26WFbehSj0Xij7dZKJPmQf19vvIQMA_N4zHsz8KrqM2dLzpn5drlaXW82S8GEXEohO6Plh-pU8M4sZCu7k3f4U3WR845NpSeqVacV3cM-YIhjrh-ip_qKCmEJcajHHIZtfQ_4GAaq1wRpOBAw-Poq5JKCGwtNGArUmxITbOmo-b6P-BcfIQz11H82D_m8-tjDPtPFcZ5Vv2-uf61-LNY_b-9Wl-sFNsyURee8QOGIadl4LYgbgww9Mg7IFZnWtz05plnXY9-73oBrQKL0SoLxUsuz6m729RF29imFf5BebIRgX4mYthZSCbgn61pF5H2jEVQje601IINOOce8oVZMXl9nr6cUn0fKxe7imIbpfStUZ6RhupXTlpy3MMWcE_VvVzmzh3jsHI89xGOP8UyqL7MqENE7BeNKNEr-B5A4jP4</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Nouman, Muhammad</creator><creator>Qasim, Umar</creator><creator>Nasir, Hina</creator><creator>Almasoud, Abdullah</creator><creator>Imran, Muhammad</creator><creator>Javaid, Nadeem</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9805-970X</orcidid><orcidid>https://orcid.org/0000-0002-6946-2591</orcidid><orcidid>https://orcid.org/0000-0003-3777-8249</orcidid></search><sort><creationdate>20230101</creationdate><title>Malicious Node Detection using Machine Learning and Distributed Data Storage using Blockchain in WSNs</title><author>Nouman, Muhammad ; Qasim, Umar ; Nasir, Hina ; Almasoud, Abdullah ; Imran, Muhammad ; Javaid, Nadeem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-6bd2c2be0834d82e199c0cdc01ac17e95d5feb0806fcffbf9ab4a3c3d73a9d383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Authentication</topic><topic>Blockchain</topic><topic>Blockchains</topic><topic>Classifiers</topic><topic>Cryptography</topic><topic>Data models</topic><topic>Data storage</topic><topic>Datasets</topic><topic>Discriminant analysis</topic><topic>Fault tolerance</topic><topic>Histogram Gradient Boost</topic><topic>Histograms</topic><topic>Internet of Things</topic><topic>IPFS</topic><topic>Machine learning</topic><topic>Malicious Node Detection</topic><topic>Nodes</topic><topic>Performance evaluation</topic><topic>Performance measurement</topic><topic>Routing</topic><topic>Security</topic><topic>VBFT</topic><topic>Wireless sensor networks</topic><topic>WSN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nouman, Muhammad</creatorcontrib><creatorcontrib>Qasim, Umar</creatorcontrib><creatorcontrib>Nasir, Hina</creatorcontrib><creatorcontrib>Almasoud, Abdullah</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Javaid, Nadeem</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nouman, Muhammad</au><au>Qasim, Umar</au><au>Nasir, Hina</au><au>Almasoud, Abdullah</au><au>Imran, Muhammad</au><au>Javaid, Nadeem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Malicious Node Detection using Machine Learning and Distributed Data Storage using Blockchain in WSNs</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In the proposed work, blockchain is implemented on the Base Stations (BSs) and Cluster Heads (CHs) to register the nodes using their credentials and also to tackle various security issues. Moreover, a Machine Learning (ML) classifier, termed as Histogram Gradient Boost (HGB), is employed on the BSs to classify the nodes as malicious or legitimate. In case, the node is found to be malicious, its registration is revoked from the network. Whereas, if a node is found to be legitimate, then its data is stored in an Interplanetary File System (IPFS). IPFS stores the data in the form of chunks and generates hash for the data, which is then stored in blockchain. In addition, Verifiable Byzantine Fault Tolerance (VBFT) is used instead of Proof of Work (PoW) to perform consensus and validate transactions. Also, extensive simulations are performed using the Wireless Sensor Network (WSN) dataset, referred as WSN-DS. The proposed model is evaluated both on the original dataset and the balanced dataset. Furthermore, HGB is compared with other existing classifiers, Adaptive Boost (AdaBoost), Gradient Boost (GB), Linear Discriminant Analysis (LDA), Extreme Gradient Boost (XGB) and ridge, using different performance metrics like accuracy, precision, recall, micro-F1 score and macro-F1 score. The performance evaluation of HGB shows that it outperforms GB, AdaBoost, LDA, XGB and Ridge by 2-4%, 8-10%, 12-14%, 3-5% and 14-16%, respectively. Moreover, the results with balanced dataset are better than those with original dataset. Also, VBFT performs 20-30% better than PoW. Overall, the proposed model performs efficiently in terms of malicious node detection and secure data storage.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3236983</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9805-970X</orcidid><orcidid>https://orcid.org/0000-0002-6946-2591</orcidid><orcidid>https://orcid.org/0000-0003-3777-8249</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2769390853 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Authentication Blockchain Blockchains Classifiers Cryptography Data models Data storage Datasets Discriminant analysis Fault tolerance Histogram Gradient Boost Histograms Internet of Things IPFS Machine learning Malicious Node Detection Nodes Performance evaluation Performance measurement Routing Security VBFT Wireless sensor networks WSN |
title | Malicious Node Detection using Machine Learning and Distributed Data Storage using Blockchain in WSNs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A04%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Malicious%20Node%20Detection%20using%20Machine%20Learning%20and%20Distributed%20Data%20Storage%20using%20Blockchain%20in%20WSNs&rft.jtitle=IEEE%20access&rft.au=Nouman,%20Muhammad&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3236983&rft_dat=%3Cproquest_ieee_%3E2769390853%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769390853&rft_id=info:pmid/&rft_ieee_id=10017247&rft_doaj_id=oai_doaj_org_article_b57eedd48ca743f888ac0a67bb0d9e52&rfr_iscdi=true |