Malicious Node Detection using Machine Learning and Distributed Data Storage using Blockchain in WSNs

In the proposed work, blockchain is implemented on the Base Stations (BSs) and Cluster Heads (CHs) to register the nodes using their credentials and also to tackle various security issues. Moreover, a Machine Learning (ML) classifier, termed as Histogram Gradient Boost (HGB), is employed on the BSs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Nouman, Muhammad, Qasim, Umar, Nasir, Hina, Almasoud, Abdullah, Imran, Muhammad, Javaid, Nadeem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Nouman, Muhammad
Qasim, Umar
Nasir, Hina
Almasoud, Abdullah
Imran, Muhammad
Javaid, Nadeem
description In the proposed work, blockchain is implemented on the Base Stations (BSs) and Cluster Heads (CHs) to register the nodes using their credentials and also to tackle various security issues. Moreover, a Machine Learning (ML) classifier, termed as Histogram Gradient Boost (HGB), is employed on the BSs to classify the nodes as malicious or legitimate. In case, the node is found to be malicious, its registration is revoked from the network. Whereas, if a node is found to be legitimate, then its data is stored in an Interplanetary File System (IPFS). IPFS stores the data in the form of chunks and generates hash for the data, which is then stored in blockchain. In addition, Verifiable Byzantine Fault Tolerance (VBFT) is used instead of Proof of Work (PoW) to perform consensus and validate transactions. Also, extensive simulations are performed using the Wireless Sensor Network (WSN) dataset, referred as WSN-DS. The proposed model is evaluated both on the original dataset and the balanced dataset. Furthermore, HGB is compared with other existing classifiers, Adaptive Boost (AdaBoost), Gradient Boost (GB), Linear Discriminant Analysis (LDA), Extreme Gradient Boost (XGB) and ridge, using different performance metrics like accuracy, precision, recall, micro-F1 score and macro-F1 score. The performance evaluation of HGB shows that it outperforms GB, AdaBoost, LDA, XGB and Ridge by 2-4%, 8-10%, 12-14%, 3-5% and 14-16%, respectively. Moreover, the results with balanced dataset are better than those with original dataset. Also, VBFT performs 20-30% better than PoW. Overall, the proposed model performs efficiently in terms of malicious node detection and secure data storage.
doi_str_mv 10.1109/ACCESS.2023.3236983
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2769390853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10017247</ieee_id><doaj_id>oai_doaj_org_article_b57eedd48ca743f888ac0a67bb0d9e52</doaj_id><sourcerecordid>2769390853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-6bd2c2be0834d82e199c0cdc01ac17e95d5feb0806fcffbf9ab4a3c3d73a9d383</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNSWFhiS_oD0Yet6tPmxLOqabjwY26WFbehSj0Xij7dZKJPmQf19vvIQMA_N4zHsz8KrqM2dLzpn5drlaXW82S8GEXEohO6Plh-pU8M4sZCu7k3f4U3WR845NpSeqVacV3cM-YIhjrh-ip_qKCmEJcajHHIZtfQ_4GAaq1wRpOBAw-Poq5JKCGwtNGArUmxITbOmo-b6P-BcfIQz11H82D_m8-tjDPtPFcZ5Vv2-uf61-LNY_b-9Wl-sFNsyURee8QOGIadl4LYgbgww9Mg7IFZnWtz05plnXY9-73oBrQKL0SoLxUsuz6m729RF29imFf5BebIRgX4mYthZSCbgn61pF5H2jEVQje601IINOOce8oVZMXl9nr6cUn0fKxe7imIbpfStUZ6RhupXTlpy3MMWcE_VvVzmzh3jsHI89xGOP8UyqL7MqENE7BeNKNEr-B5A4jP4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769390853</pqid></control><display><type>article</type><title>Malicious Node Detection using Machine Learning and Distributed Data Storage using Blockchain in WSNs</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Nouman, Muhammad ; Qasim, Umar ; Nasir, Hina ; Almasoud, Abdullah ; Imran, Muhammad ; Javaid, Nadeem</creator><creatorcontrib>Nouman, Muhammad ; Qasim, Umar ; Nasir, Hina ; Almasoud, Abdullah ; Imran, Muhammad ; Javaid, Nadeem</creatorcontrib><description>In the proposed work, blockchain is implemented on the Base Stations (BSs) and Cluster Heads (CHs) to register the nodes using their credentials and also to tackle various security issues. Moreover, a Machine Learning (ML) classifier, termed as Histogram Gradient Boost (HGB), is employed on the BSs to classify the nodes as malicious or legitimate. In case, the node is found to be malicious, its registration is revoked from the network. Whereas, if a node is found to be legitimate, then its data is stored in an Interplanetary File System (IPFS). IPFS stores the data in the form of chunks and generates hash for the data, which is then stored in blockchain. In addition, Verifiable Byzantine Fault Tolerance (VBFT) is used instead of Proof of Work (PoW) to perform consensus and validate transactions. Also, extensive simulations are performed using the Wireless Sensor Network (WSN) dataset, referred as WSN-DS. The proposed model is evaluated both on the original dataset and the balanced dataset. Furthermore, HGB is compared with other existing classifiers, Adaptive Boost (AdaBoost), Gradient Boost (GB), Linear Discriminant Analysis (LDA), Extreme Gradient Boost (XGB) and ridge, using different performance metrics like accuracy, precision, recall, micro-F1 score and macro-F1 score. The performance evaluation of HGB shows that it outperforms GB, AdaBoost, LDA, XGB and Ridge by 2-4%, 8-10%, 12-14%, 3-5% and 14-16%, respectively. Moreover, the results with balanced dataset are better than those with original dataset. Also, VBFT performs 20-30% better than PoW. Overall, the proposed model performs efficiently in terms of malicious node detection and secure data storage.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3236983</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Authentication ; Blockchain ; Blockchains ; Classifiers ; Cryptography ; Data models ; Data storage ; Datasets ; Discriminant analysis ; Fault tolerance ; Histogram Gradient Boost ; Histograms ; Internet of Things ; IPFS ; Machine learning ; Malicious Node Detection ; Nodes ; Performance evaluation ; Performance measurement ; Routing ; Security ; VBFT ; Wireless sensor networks ; WSN</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-6bd2c2be0834d82e199c0cdc01ac17e95d5feb0806fcffbf9ab4a3c3d73a9d383</citedby><cites>FETCH-LOGICAL-c409t-6bd2c2be0834d82e199c0cdc01ac17e95d5feb0806fcffbf9ab4a3c3d73a9d383</cites><orcidid>0000-0002-9805-970X ; 0000-0002-6946-2591 ; 0000-0003-3777-8249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10017247$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Nouman, Muhammad</creatorcontrib><creatorcontrib>Qasim, Umar</creatorcontrib><creatorcontrib>Nasir, Hina</creatorcontrib><creatorcontrib>Almasoud, Abdullah</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Javaid, Nadeem</creatorcontrib><title>Malicious Node Detection using Machine Learning and Distributed Data Storage using Blockchain in WSNs</title><title>IEEE access</title><addtitle>Access</addtitle><description>In the proposed work, blockchain is implemented on the Base Stations (BSs) and Cluster Heads (CHs) to register the nodes using their credentials and also to tackle various security issues. Moreover, a Machine Learning (ML) classifier, termed as Histogram Gradient Boost (HGB), is employed on the BSs to classify the nodes as malicious or legitimate. In case, the node is found to be malicious, its registration is revoked from the network. Whereas, if a node is found to be legitimate, then its data is stored in an Interplanetary File System (IPFS). IPFS stores the data in the form of chunks and generates hash for the data, which is then stored in blockchain. In addition, Verifiable Byzantine Fault Tolerance (VBFT) is used instead of Proof of Work (PoW) to perform consensus and validate transactions. Also, extensive simulations are performed using the Wireless Sensor Network (WSN) dataset, referred as WSN-DS. The proposed model is evaluated both on the original dataset and the balanced dataset. Furthermore, HGB is compared with other existing classifiers, Adaptive Boost (AdaBoost), Gradient Boost (GB), Linear Discriminant Analysis (LDA), Extreme Gradient Boost (XGB) and ridge, using different performance metrics like accuracy, precision, recall, micro-F1 score and macro-F1 score. The performance evaluation of HGB shows that it outperforms GB, AdaBoost, LDA, XGB and Ridge by 2-4%, 8-10%, 12-14%, 3-5% and 14-16%, respectively. Moreover, the results with balanced dataset are better than those with original dataset. Also, VBFT performs 20-30% better than PoW. Overall, the proposed model performs efficiently in terms of malicious node detection and secure data storage.</description><subject>Authentication</subject><subject>Blockchain</subject><subject>Blockchains</subject><subject>Classifiers</subject><subject>Cryptography</subject><subject>Data models</subject><subject>Data storage</subject><subject>Datasets</subject><subject>Discriminant analysis</subject><subject>Fault tolerance</subject><subject>Histogram Gradient Boost</subject><subject>Histograms</subject><subject>Internet of Things</subject><subject>IPFS</subject><subject>Machine learning</subject><subject>Malicious Node Detection</subject><subject>Nodes</subject><subject>Performance evaluation</subject><subject>Performance measurement</subject><subject>Routing</subject><subject>Security</subject><subject>VBFT</subject><subject>Wireless sensor networks</subject><subject>WSN</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNSWFhiS_oD0Yet6tPmxLOqabjwY26WFbehSj0Xij7dZKJPmQf19vvIQMA_N4zHsz8KrqM2dLzpn5drlaXW82S8GEXEohO6Plh-pU8M4sZCu7k3f4U3WR845NpSeqVacV3cM-YIhjrh-ip_qKCmEJcajHHIZtfQ_4GAaq1wRpOBAw-Poq5JKCGwtNGArUmxITbOmo-b6P-BcfIQz11H82D_m8-tjDPtPFcZ5Vv2-uf61-LNY_b-9Wl-sFNsyURee8QOGIadl4LYgbgww9Mg7IFZnWtz05plnXY9-73oBrQKL0SoLxUsuz6m729RF29imFf5BebIRgX4mYthZSCbgn61pF5H2jEVQje601IINOOce8oVZMXl9nr6cUn0fKxe7imIbpfStUZ6RhupXTlpy3MMWcE_VvVzmzh3jsHI89xGOP8UyqL7MqENE7BeNKNEr-B5A4jP4</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Nouman, Muhammad</creator><creator>Qasim, Umar</creator><creator>Nasir, Hina</creator><creator>Almasoud, Abdullah</creator><creator>Imran, Muhammad</creator><creator>Javaid, Nadeem</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9805-970X</orcidid><orcidid>https://orcid.org/0000-0002-6946-2591</orcidid><orcidid>https://orcid.org/0000-0003-3777-8249</orcidid></search><sort><creationdate>20230101</creationdate><title>Malicious Node Detection using Machine Learning and Distributed Data Storage using Blockchain in WSNs</title><author>Nouman, Muhammad ; Qasim, Umar ; Nasir, Hina ; Almasoud, Abdullah ; Imran, Muhammad ; Javaid, Nadeem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-6bd2c2be0834d82e199c0cdc01ac17e95d5feb0806fcffbf9ab4a3c3d73a9d383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Authentication</topic><topic>Blockchain</topic><topic>Blockchains</topic><topic>Classifiers</topic><topic>Cryptography</topic><topic>Data models</topic><topic>Data storage</topic><topic>Datasets</topic><topic>Discriminant analysis</topic><topic>Fault tolerance</topic><topic>Histogram Gradient Boost</topic><topic>Histograms</topic><topic>Internet of Things</topic><topic>IPFS</topic><topic>Machine learning</topic><topic>Malicious Node Detection</topic><topic>Nodes</topic><topic>Performance evaluation</topic><topic>Performance measurement</topic><topic>Routing</topic><topic>Security</topic><topic>VBFT</topic><topic>Wireless sensor networks</topic><topic>WSN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nouman, Muhammad</creatorcontrib><creatorcontrib>Qasim, Umar</creatorcontrib><creatorcontrib>Nasir, Hina</creatorcontrib><creatorcontrib>Almasoud, Abdullah</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Javaid, Nadeem</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nouman, Muhammad</au><au>Qasim, Umar</au><au>Nasir, Hina</au><au>Almasoud, Abdullah</au><au>Imran, Muhammad</au><au>Javaid, Nadeem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Malicious Node Detection using Machine Learning and Distributed Data Storage using Blockchain in WSNs</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In the proposed work, blockchain is implemented on the Base Stations (BSs) and Cluster Heads (CHs) to register the nodes using their credentials and also to tackle various security issues. Moreover, a Machine Learning (ML) classifier, termed as Histogram Gradient Boost (HGB), is employed on the BSs to classify the nodes as malicious or legitimate. In case, the node is found to be malicious, its registration is revoked from the network. Whereas, if a node is found to be legitimate, then its data is stored in an Interplanetary File System (IPFS). IPFS stores the data in the form of chunks and generates hash for the data, which is then stored in blockchain. In addition, Verifiable Byzantine Fault Tolerance (VBFT) is used instead of Proof of Work (PoW) to perform consensus and validate transactions. Also, extensive simulations are performed using the Wireless Sensor Network (WSN) dataset, referred as WSN-DS. The proposed model is evaluated both on the original dataset and the balanced dataset. Furthermore, HGB is compared with other existing classifiers, Adaptive Boost (AdaBoost), Gradient Boost (GB), Linear Discriminant Analysis (LDA), Extreme Gradient Boost (XGB) and ridge, using different performance metrics like accuracy, precision, recall, micro-F1 score and macro-F1 score. The performance evaluation of HGB shows that it outperforms GB, AdaBoost, LDA, XGB and Ridge by 2-4%, 8-10%, 12-14%, 3-5% and 14-16%, respectively. Moreover, the results with balanced dataset are better than those with original dataset. Also, VBFT performs 20-30% better than PoW. Overall, the proposed model performs efficiently in terms of malicious node detection and secure data storage.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3236983</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9805-970X</orcidid><orcidid>https://orcid.org/0000-0002-6946-2591</orcidid><orcidid>https://orcid.org/0000-0003-3777-8249</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2769390853
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
subjects Authentication
Blockchain
Blockchains
Classifiers
Cryptography
Data models
Data storage
Datasets
Discriminant analysis
Fault tolerance
Histogram Gradient Boost
Histograms
Internet of Things
IPFS
Machine learning
Malicious Node Detection
Nodes
Performance evaluation
Performance measurement
Routing
Security
VBFT
Wireless sensor networks
WSN
title Malicious Node Detection using Machine Learning and Distributed Data Storage using Blockchain in WSNs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A04%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Malicious%20Node%20Detection%20using%20Machine%20Learning%20and%20Distributed%20Data%20Storage%20using%20Blockchain%20in%20WSNs&rft.jtitle=IEEE%20access&rft.au=Nouman,%20Muhammad&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3236983&rft_dat=%3Cproquest_ieee_%3E2769390853%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769390853&rft_id=info:pmid/&rft_ieee_id=10017247&rft_doaj_id=oai_doaj_org_article_b57eedd48ca743f888ac0a67bb0d9e52&rfr_iscdi=true