Linguistic Based Emotion Detection from Live Social Media Data Classification Using Metaheuristic Deep Learning Techniques
A crucial area of research that can reveal numerous useful insights is emotional recognition. Several visible ways, including speech, gestures, written material, and facial expressions, can be used to portray emotion. Natural language processing (NLP) and DL concepts are utilised in the content-base...
Gespeichert in:
Veröffentlicht in: | International journal of communication networks and information security 2022-12, Vol.14 (3), p.176-186 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 186 |
---|---|
container_issue | 3 |
container_start_page | 176 |
container_title | International journal of communication networks and information security |
container_volume | 14 |
creator | Mubeen, Suraya Kulkarni, Dr Nandini Tanpoco, Manuel R. Kumar, Dr. R.Dinesh M, Lakshmu Naidu Dhope, Tanuja |
description | A crucial area of research that can reveal numerous useful insights is emotional recognition. Several visible ways, including speech, gestures, written material, and facial expressions, can be used to portray emotion. Natural language processing (NLP) and DL concepts are utilised in the content-based categorization problem that is at the core of emotion recognition in text documents.This research propose novel technique in linguistic based emotion detection by social media using metaheuristic deep learning architectures. Here the input has been collected as live social media data and processed for noise removal, smoothening and dimensionality reduction. Processed data has been extracted and classified using metaheuristic swarm regressive adversarial kernel component analysis. Experimental analysis has been carried out in terms of precision, accuracy, recall, F-1 score, RMSE and MAP for various social media dataset. |
doi_str_mv | 10.17762/ijcnis.v14i3.5604 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2769280531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2769280531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c190t-8d6e36a43512de0dbc134a8898b8aa4a6327fd894700548d9a4c74a5b63267333</originalsourceid><addsrcrecordid>eNotkF1LwzAYhYMoOKd_wKuA151vmjRJL3WbH1Dxwg28C-_S1GVs7Uzagf56u86rc-AczoGHkFsGE6aUTO_9xtY-Tg5MeD7JJIgzMkpB8USC-jwfvEwg53BJrmLcAEgJkI_Ib-Hrr87H1lv6iNGVdL5rWt_UdOZaZwdXhWZHC39w9KOxHrf0zZUe6QxbpNMtxugrb3GoLmM_1-ctrl0XTrMz5_a0cBjqY7Zwdl37787Fa3JR4Ta6m38dk-XTfDF9SYr359fpQ5FYlkOb6FI6LlHwjKWlg3JlGReoda5XGlGg5KmqSp0LBZAJXeYorBKYrfpAKs75mNyddvehOf62ZtN0oe4vTapknmrIOOtb6allQxNjcJXZB7_D8GMYmIGxOTE2A2NzZMz_AK2Zcpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769280531</pqid></control><display><type>article</type><title>Linguistic Based Emotion Detection from Live Social Media Data Classification Using Metaheuristic Deep Learning Techniques</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mubeen, Suraya ; Kulkarni, Dr Nandini ; Tanpoco, Manuel R. ; Kumar, Dr. R.Dinesh ; M, Lakshmu Naidu ; Dhope, Tanuja</creator><creatorcontrib>Mubeen, Suraya ; Kulkarni, Dr Nandini ; Tanpoco, Manuel R. ; Kumar, Dr. R.Dinesh ; M, Lakshmu Naidu ; Dhope, Tanuja</creatorcontrib><description>A crucial area of research that can reveal numerous useful insights is emotional recognition. Several visible ways, including speech, gestures, written material, and facial expressions, can be used to portray emotion. Natural language processing (NLP) and DL concepts are utilised in the content-based categorization problem that is at the core of emotion recognition in text documents.This research propose novel technique in linguistic based emotion detection by social media using metaheuristic deep learning architectures. Here the input has been collected as live social media data and processed for noise removal, smoothening and dimensionality reduction. Processed data has been extracted and classified using metaheuristic swarm regressive adversarial kernel component analysis. Experimental analysis has been carried out in terms of precision, accuracy, recall, F-1 score, RMSE and MAP for various social media dataset.</description><identifier>ISSN: 2076-0930</identifier><identifier>ISSN: 2073-607X</identifier><identifier>EISSN: 2073-607X</identifier><identifier>EISSN: 2076-0930</identifier><identifier>DOI: 10.17762/ijcnis.v14i3.5604</identifier><language>eng</language><publisher>Kohat: Kohat University of Science and Technology (KUST)</publisher><subject>Artificial intelligence ; Communication ; Deep learning ; Digital media ; Emotion recognition ; Emotions ; Heuristic methods ; Language ; Linguistics ; Machine learning ; Machine translation ; Natural language ; Natural language processing ; Ontology ; Sentiment analysis ; Social networks ; Speech recognition ; Support vector machines ; Voice recognition</subject><ispartof>International journal of communication networks and information security, 2022-12, Vol.14 (3), p.176-186</ispartof><rights>Copyright Kohat University of Science and Technology (KUST) Dec 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c190t-8d6e36a43512de0dbc134a8898b8aa4a6327fd894700548d9a4c74a5b63267333</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mubeen, Suraya</creatorcontrib><creatorcontrib>Kulkarni, Dr Nandini</creatorcontrib><creatorcontrib>Tanpoco, Manuel R.</creatorcontrib><creatorcontrib>Kumar, Dr. R.Dinesh</creatorcontrib><creatorcontrib>M, Lakshmu Naidu</creatorcontrib><creatorcontrib>Dhope, Tanuja</creatorcontrib><title>Linguistic Based Emotion Detection from Live Social Media Data Classification Using Metaheuristic Deep Learning Techniques</title><title>International journal of communication networks and information security</title><description>A crucial area of research that can reveal numerous useful insights is emotional recognition. Several visible ways, including speech, gestures, written material, and facial expressions, can be used to portray emotion. Natural language processing (NLP) and DL concepts are utilised in the content-based categorization problem that is at the core of emotion recognition in text documents.This research propose novel technique in linguistic based emotion detection by social media using metaheuristic deep learning architectures. Here the input has been collected as live social media data and processed for noise removal, smoothening and dimensionality reduction. Processed data has been extracted and classified using metaheuristic swarm regressive adversarial kernel component analysis. Experimental analysis has been carried out in terms of precision, accuracy, recall, F-1 score, RMSE and MAP for various social media dataset.</description><subject>Artificial intelligence</subject><subject>Communication</subject><subject>Deep learning</subject><subject>Digital media</subject><subject>Emotion recognition</subject><subject>Emotions</subject><subject>Heuristic methods</subject><subject>Language</subject><subject>Linguistics</subject><subject>Machine learning</subject><subject>Machine translation</subject><subject>Natural language</subject><subject>Natural language processing</subject><subject>Ontology</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Speech recognition</subject><subject>Support vector machines</subject><subject>Voice recognition</subject><issn>2076-0930</issn><issn>2073-607X</issn><issn>2073-607X</issn><issn>2076-0930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkF1LwzAYhYMoOKd_wKuA151vmjRJL3WbH1Dxwg28C-_S1GVs7Uzagf56u86rc-AczoGHkFsGE6aUTO_9xtY-Tg5MeD7JJIgzMkpB8USC-jwfvEwg53BJrmLcAEgJkI_Ib-Hrr87H1lv6iNGVdL5rWt_UdOZaZwdXhWZHC39w9KOxHrf0zZUe6QxbpNMtxugrb3GoLmM_1-ctrl0XTrMz5_a0cBjqY7Zwdl37787Fa3JR4Ta6m38dk-XTfDF9SYr359fpQ5FYlkOb6FI6LlHwjKWlg3JlGReoda5XGlGg5KmqSp0LBZAJXeYorBKYrfpAKs75mNyddvehOf62ZtN0oe4vTapknmrIOOtb6allQxNjcJXZB7_D8GMYmIGxOTE2A2NzZMz_AK2Zcpg</recordid><startdate>20221231</startdate><enddate>20221231</enddate><creator>Mubeen, Suraya</creator><creator>Kulkarni, Dr Nandini</creator><creator>Tanpoco, Manuel R.</creator><creator>Kumar, Dr. R.Dinesh</creator><creator>M, Lakshmu Naidu</creator><creator>Dhope, Tanuja</creator><general>Kohat University of Science and Technology (KUST)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RQ</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2P</scope><scope>M2T</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20221231</creationdate><title>Linguistic Based Emotion Detection from Live Social Media Data Classification Using Metaheuristic Deep Learning Techniques</title><author>Mubeen, Suraya ; Kulkarni, Dr Nandini ; Tanpoco, Manuel R. ; Kumar, Dr. R.Dinesh ; M, Lakshmu Naidu ; Dhope, Tanuja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c190t-8d6e36a43512de0dbc134a8898b8aa4a6327fd894700548d9a4c74a5b63267333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Communication</topic><topic>Deep learning</topic><topic>Digital media</topic><topic>Emotion recognition</topic><topic>Emotions</topic><topic>Heuristic methods</topic><topic>Language</topic><topic>Linguistics</topic><topic>Machine learning</topic><topic>Machine translation</topic><topic>Natural language</topic><topic>Natural language processing</topic><topic>Ontology</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Speech recognition</topic><topic>Support vector machines</topic><topic>Voice recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mubeen, Suraya</creatorcontrib><creatorcontrib>Kulkarni, Dr Nandini</creatorcontrib><creatorcontrib>Tanpoco, Manuel R.</creatorcontrib><creatorcontrib>Kumar, Dr. R.Dinesh</creatorcontrib><creatorcontrib>M, Lakshmu Naidu</creatorcontrib><creatorcontrib>Dhope, Tanuja</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Career & Technical Education Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of communication networks and information security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mubeen, Suraya</au><au>Kulkarni, Dr Nandini</au><au>Tanpoco, Manuel R.</au><au>Kumar, Dr. R.Dinesh</au><au>M, Lakshmu Naidu</au><au>Dhope, Tanuja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linguistic Based Emotion Detection from Live Social Media Data Classification Using Metaheuristic Deep Learning Techniques</atitle><jtitle>International journal of communication networks and information security</jtitle><date>2022-12-31</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>176</spage><epage>186</epage><pages>176-186</pages><issn>2076-0930</issn><issn>2073-607X</issn><eissn>2073-607X</eissn><eissn>2076-0930</eissn><abstract>A crucial area of research that can reveal numerous useful insights is emotional recognition. Several visible ways, including speech, gestures, written material, and facial expressions, can be used to portray emotion. Natural language processing (NLP) and DL concepts are utilised in the content-based categorization problem that is at the core of emotion recognition in text documents.This research propose novel technique in linguistic based emotion detection by social media using metaheuristic deep learning architectures. Here the input has been collected as live social media data and processed for noise removal, smoothening and dimensionality reduction. Processed data has been extracted and classified using metaheuristic swarm regressive adversarial kernel component analysis. Experimental analysis has been carried out in terms of precision, accuracy, recall, F-1 score, RMSE and MAP for various social media dataset.</abstract><cop>Kohat</cop><pub>Kohat University of Science and Technology (KUST)</pub><doi>10.17762/ijcnis.v14i3.5604</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-0930 |
ispartof | International journal of communication networks and information security, 2022-12, Vol.14 (3), p.176-186 |
issn | 2076-0930 2073-607X 2073-607X 2076-0930 |
language | eng |
recordid | cdi_proquest_journals_2769280531 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Artificial intelligence Communication Deep learning Digital media Emotion recognition Emotions Heuristic methods Language Linguistics Machine learning Machine translation Natural language Natural language processing Ontology Sentiment analysis Social networks Speech recognition Support vector machines Voice recognition |
title | Linguistic Based Emotion Detection from Live Social Media Data Classification Using Metaheuristic Deep Learning Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linguistic%20Based%20Emotion%20Detection%20from%20Live%20Social%20Media%20Data%20Classification%20Using%20Metaheuristic%20Deep%20Learning%20Techniques&rft.jtitle=International%20journal%20of%20communication%20networks%20and%20information%20security&rft.au=Mubeen,%20Suraya&rft.date=2022-12-31&rft.volume=14&rft.issue=3&rft.spage=176&rft.epage=186&rft.pages=176-186&rft.issn=2076-0930&rft.eissn=2073-607X&rft_id=info:doi/10.17762/ijcnis.v14i3.5604&rft_dat=%3Cproquest_cross%3E2769280531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769280531&rft_id=info:pmid/&rfr_iscdi=true |