Linguistic Based Emotion Detection from Live Social Media Data Classification Using Metaheuristic Deep Learning Techniques

A crucial area of research that can reveal numerous useful insights is emotional recognition. Several visible ways, including speech, gestures, written material, and facial expressions, can be used to portray emotion. Natural language processing (NLP) and DL concepts are utilised in the content-base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of communication networks and information security 2022-12, Vol.14 (3), p.176-186
Hauptverfasser: Mubeen, Suraya, Kulkarni, Dr Nandini, Tanpoco, Manuel R., Kumar, Dr. R.Dinesh, M, Lakshmu Naidu, Dhope, Tanuja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue 3
container_start_page 176
container_title International journal of communication networks and information security
container_volume 14
creator Mubeen, Suraya
Kulkarni, Dr Nandini
Tanpoco, Manuel R.
Kumar, Dr. R.Dinesh
M, Lakshmu Naidu
Dhope, Tanuja
description A crucial area of research that can reveal numerous useful insights is emotional recognition. Several visible ways, including speech, gestures, written material, and facial expressions, can be used to portray emotion. Natural language processing (NLP) and DL concepts are utilised in the content-based categorization problem that is at the core of emotion recognition in text documents.This research propose novel technique in linguistic based emotion detection by social media using metaheuristic deep learning architectures. Here the input has been collected as live social media data and processed for noise removal, smoothening and dimensionality reduction. Processed data has been extracted and classified using metaheuristic swarm regressive adversarial kernel component analysis. Experimental analysis has been carried out in terms of precision, accuracy, recall, F-1 score, RMSE and MAP for various social media dataset.
doi_str_mv 10.17762/ijcnis.v14i3.5604
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2769280531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2769280531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c190t-8d6e36a43512de0dbc134a8898b8aa4a6327fd894700548d9a4c74a5b63267333</originalsourceid><addsrcrecordid>eNotkF1LwzAYhYMoOKd_wKuA151vmjRJL3WbH1Dxwg28C-_S1GVs7Uzagf56u86rc-AczoGHkFsGE6aUTO_9xtY-Tg5MeD7JJIgzMkpB8USC-jwfvEwg53BJrmLcAEgJkI_Ib-Hrr87H1lv6iNGVdL5rWt_UdOZaZwdXhWZHC39w9KOxHrf0zZUe6QxbpNMtxugrb3GoLmM_1-ctrl0XTrMz5_a0cBjqY7Zwdl37787Fa3JR4Ta6m38dk-XTfDF9SYr359fpQ5FYlkOb6FI6LlHwjKWlg3JlGReoda5XGlGg5KmqSp0LBZAJXeYorBKYrfpAKs75mNyddvehOf62ZtN0oe4vTapknmrIOOtb6allQxNjcJXZB7_D8GMYmIGxOTE2A2NzZMz_AK2Zcpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769280531</pqid></control><display><type>article</type><title>Linguistic Based Emotion Detection from Live Social Media Data Classification Using Metaheuristic Deep Learning Techniques</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mubeen, Suraya ; Kulkarni, Dr Nandini ; Tanpoco, Manuel R. ; Kumar, Dr. R.Dinesh ; M, Lakshmu Naidu ; Dhope, Tanuja</creator><creatorcontrib>Mubeen, Suraya ; Kulkarni, Dr Nandini ; Tanpoco, Manuel R. ; Kumar, Dr. R.Dinesh ; M, Lakshmu Naidu ; Dhope, Tanuja</creatorcontrib><description>A crucial area of research that can reveal numerous useful insights is emotional recognition. Several visible ways, including speech, gestures, written material, and facial expressions, can be used to portray emotion. Natural language processing (NLP) and DL concepts are utilised in the content-based categorization problem that is at the core of emotion recognition in text documents.This research propose novel technique in linguistic based emotion detection by social media using metaheuristic deep learning architectures. Here the input has been collected as live social media data and processed for noise removal, smoothening and dimensionality reduction. Processed data has been extracted and classified using metaheuristic swarm regressive adversarial kernel component analysis. Experimental analysis has been carried out in terms of precision, accuracy, recall, F-1 score, RMSE and MAP for various social media dataset.</description><identifier>ISSN: 2076-0930</identifier><identifier>ISSN: 2073-607X</identifier><identifier>EISSN: 2073-607X</identifier><identifier>EISSN: 2076-0930</identifier><identifier>DOI: 10.17762/ijcnis.v14i3.5604</identifier><language>eng</language><publisher>Kohat: Kohat University of Science and Technology (KUST)</publisher><subject>Artificial intelligence ; Communication ; Deep learning ; Digital media ; Emotion recognition ; Emotions ; Heuristic methods ; Language ; Linguistics ; Machine learning ; Machine translation ; Natural language ; Natural language processing ; Ontology ; Sentiment analysis ; Social networks ; Speech recognition ; Support vector machines ; Voice recognition</subject><ispartof>International journal of communication networks and information security, 2022-12, Vol.14 (3), p.176-186</ispartof><rights>Copyright Kohat University of Science and Technology (KUST) Dec 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c190t-8d6e36a43512de0dbc134a8898b8aa4a6327fd894700548d9a4c74a5b63267333</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mubeen, Suraya</creatorcontrib><creatorcontrib>Kulkarni, Dr Nandini</creatorcontrib><creatorcontrib>Tanpoco, Manuel R.</creatorcontrib><creatorcontrib>Kumar, Dr. R.Dinesh</creatorcontrib><creatorcontrib>M, Lakshmu Naidu</creatorcontrib><creatorcontrib>Dhope, Tanuja</creatorcontrib><title>Linguistic Based Emotion Detection from Live Social Media Data Classification Using Metaheuristic Deep Learning Techniques</title><title>International journal of communication networks and information security</title><description>A crucial area of research that can reveal numerous useful insights is emotional recognition. Several visible ways, including speech, gestures, written material, and facial expressions, can be used to portray emotion. Natural language processing (NLP) and DL concepts are utilised in the content-based categorization problem that is at the core of emotion recognition in text documents.This research propose novel technique in linguistic based emotion detection by social media using metaheuristic deep learning architectures. Here the input has been collected as live social media data and processed for noise removal, smoothening and dimensionality reduction. Processed data has been extracted and classified using metaheuristic swarm regressive adversarial kernel component analysis. Experimental analysis has been carried out in terms of precision, accuracy, recall, F-1 score, RMSE and MAP for various social media dataset.</description><subject>Artificial intelligence</subject><subject>Communication</subject><subject>Deep learning</subject><subject>Digital media</subject><subject>Emotion recognition</subject><subject>Emotions</subject><subject>Heuristic methods</subject><subject>Language</subject><subject>Linguistics</subject><subject>Machine learning</subject><subject>Machine translation</subject><subject>Natural language</subject><subject>Natural language processing</subject><subject>Ontology</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Speech recognition</subject><subject>Support vector machines</subject><subject>Voice recognition</subject><issn>2076-0930</issn><issn>2073-607X</issn><issn>2073-607X</issn><issn>2076-0930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkF1LwzAYhYMoOKd_wKuA151vmjRJL3WbH1Dxwg28C-_S1GVs7Uzagf56u86rc-AczoGHkFsGE6aUTO_9xtY-Tg5MeD7JJIgzMkpB8USC-jwfvEwg53BJrmLcAEgJkI_Ib-Hrr87H1lv6iNGVdL5rWt_UdOZaZwdXhWZHC39w9KOxHrf0zZUe6QxbpNMtxugrb3GoLmM_1-ctrl0XTrMz5_a0cBjqY7Zwdl37787Fa3JR4Ta6m38dk-XTfDF9SYr359fpQ5FYlkOb6FI6LlHwjKWlg3JlGReoda5XGlGg5KmqSp0LBZAJXeYorBKYrfpAKs75mNyddvehOf62ZtN0oe4vTapknmrIOOtb6allQxNjcJXZB7_D8GMYmIGxOTE2A2NzZMz_AK2Zcpg</recordid><startdate>20221231</startdate><enddate>20221231</enddate><creator>Mubeen, Suraya</creator><creator>Kulkarni, Dr Nandini</creator><creator>Tanpoco, Manuel R.</creator><creator>Kumar, Dr. R.Dinesh</creator><creator>M, Lakshmu Naidu</creator><creator>Dhope, Tanuja</creator><general>Kohat University of Science and Technology (KUST)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RQ</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2P</scope><scope>M2T</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20221231</creationdate><title>Linguistic Based Emotion Detection from Live Social Media Data Classification Using Metaheuristic Deep Learning Techniques</title><author>Mubeen, Suraya ; Kulkarni, Dr Nandini ; Tanpoco, Manuel R. ; Kumar, Dr. R.Dinesh ; M, Lakshmu Naidu ; Dhope, Tanuja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c190t-8d6e36a43512de0dbc134a8898b8aa4a6327fd894700548d9a4c74a5b63267333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Communication</topic><topic>Deep learning</topic><topic>Digital media</topic><topic>Emotion recognition</topic><topic>Emotions</topic><topic>Heuristic methods</topic><topic>Language</topic><topic>Linguistics</topic><topic>Machine learning</topic><topic>Machine translation</topic><topic>Natural language</topic><topic>Natural language processing</topic><topic>Ontology</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Speech recognition</topic><topic>Support vector machines</topic><topic>Voice recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mubeen, Suraya</creatorcontrib><creatorcontrib>Kulkarni, Dr Nandini</creatorcontrib><creatorcontrib>Tanpoco, Manuel R.</creatorcontrib><creatorcontrib>Kumar, Dr. R.Dinesh</creatorcontrib><creatorcontrib>M, Lakshmu Naidu</creatorcontrib><creatorcontrib>Dhope, Tanuja</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Career &amp; Technical Education Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of communication networks and information security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mubeen, Suraya</au><au>Kulkarni, Dr Nandini</au><au>Tanpoco, Manuel R.</au><au>Kumar, Dr. R.Dinesh</au><au>M, Lakshmu Naidu</au><au>Dhope, Tanuja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linguistic Based Emotion Detection from Live Social Media Data Classification Using Metaheuristic Deep Learning Techniques</atitle><jtitle>International journal of communication networks and information security</jtitle><date>2022-12-31</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>176</spage><epage>186</epage><pages>176-186</pages><issn>2076-0930</issn><issn>2073-607X</issn><eissn>2073-607X</eissn><eissn>2076-0930</eissn><abstract>A crucial area of research that can reveal numerous useful insights is emotional recognition. Several visible ways, including speech, gestures, written material, and facial expressions, can be used to portray emotion. Natural language processing (NLP) and DL concepts are utilised in the content-based categorization problem that is at the core of emotion recognition in text documents.This research propose novel technique in linguistic based emotion detection by social media using metaheuristic deep learning architectures. Here the input has been collected as live social media data and processed for noise removal, smoothening and dimensionality reduction. Processed data has been extracted and classified using metaheuristic swarm regressive adversarial kernel component analysis. Experimental analysis has been carried out in terms of precision, accuracy, recall, F-1 score, RMSE and MAP for various social media dataset.</abstract><cop>Kohat</cop><pub>Kohat University of Science and Technology (KUST)</pub><doi>10.17762/ijcnis.v14i3.5604</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2076-0930
ispartof International journal of communication networks and information security, 2022-12, Vol.14 (3), p.176-186
issn 2076-0930
2073-607X
2073-607X
2076-0930
language eng
recordid cdi_proquest_journals_2769280531
source EZB-FREE-00999 freely available EZB journals
subjects Artificial intelligence
Communication
Deep learning
Digital media
Emotion recognition
Emotions
Heuristic methods
Language
Linguistics
Machine learning
Machine translation
Natural language
Natural language processing
Ontology
Sentiment analysis
Social networks
Speech recognition
Support vector machines
Voice recognition
title Linguistic Based Emotion Detection from Live Social Media Data Classification Using Metaheuristic Deep Learning Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linguistic%20Based%20Emotion%20Detection%20from%20Live%20Social%20Media%20Data%20Classification%20Using%20Metaheuristic%20Deep%20Learning%20Techniques&rft.jtitle=International%20journal%20of%20communication%20networks%20and%20information%20security&rft.au=Mubeen,%20Suraya&rft.date=2022-12-31&rft.volume=14&rft.issue=3&rft.spage=176&rft.epage=186&rft.pages=176-186&rft.issn=2076-0930&rft.eissn=2073-607X&rft_id=info:doi/10.17762/ijcnis.v14i3.5604&rft_dat=%3Cproquest_cross%3E2769280531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769280531&rft_id=info:pmid/&rfr_iscdi=true