Alzheimer’s And Parkinson’s Disease Classification Using Deep Learning Based On MRI: A Review
Neurodegenerative disorders present a current challenge for accurate diagnosis and for providing precise prognostic information. Alzheimer’s disease (AD) and Parkinson's disease (PD), may take several years to obtain a definitive diagnosis. Due to the increased aging population in developed cou...
Gespeichert in:
Veröffentlicht in: | International journal of communication networks and information security 2022, Vol.14 (1s), p.9-21 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | 1s |
container_start_page | 9 |
container_title | International journal of communication networks and information security |
container_volume | 14 |
creator | A, Suganya Aarthy, S. L. |
description | Neurodegenerative disorders present a current challenge for accurate diagnosis and for providing precise prognostic information. Alzheimer’s disease (AD) and Parkinson's disease (PD), may take several years to obtain a definitive diagnosis. Due to the increased aging population in developed countries, neurodegenerative diseases such as AD and PD have become more prevalent and thus new technologies and more accurate tests are needed to improve and accelerate the diagnostic procedure in the early stages of these diseases. Deep learning has shown significant promise in computer-assisted AD and PD diagnosis based on MRI with the widespread use of artificial intelligence in the medical domain. This article analyses and evaluates the effectiveness of existing Deep learning (DL)-based approaches to identify neurological illnesses using MRI data obtained using various modalities, including functional and structural MRI. Several current research issues are identified toward the conclusion, along with several potential future study directions. |
doi_str_mv | 10.17762/ijcnis.v14i1s.5588 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2769280425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2769280425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c142t-347c7acb36c3570a669183d057ff3c24e8ec814d089046f2dc041ca135342e4c3</originalsourceid><addsrcrecordid>eNotkMtOAjEUhhujiYg-gZsmrgdPL9N23I14I8FgiCTumtrpaBE62AJGV76Gr-eTCIyrc8mX_08-hE4J9IiUgp77qQ0-9daEe5J6ea7UHupQkCwTIJ_2d7vIoGBwiI5SmgIIAVB0kClnX6_Oz138_f5JuAwVfjDxzYfUhN3nyidnksP9mUnJ196apW8CniQfXvCVcws8dCaG7XW54So8Cvh-PLjAJR67tXcfx-igNrPkTv5nF01urh_7d9lwdDvol8PMEk6XGePSSmOfmbAsl2CEKIhiFeSyrpml3ClnFeEVqAK4qGllgRNrCMsZp45b1kVnbe4iNu8rl5Z62qxi2FRqKkVBFXCabyjWUjY2KUVX60X0cxM_NQG9c6lbl7p1qbcu2R9QMWrt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769280425</pqid></control><display><type>article</type><title>Alzheimer’s And Parkinson’s Disease Classification Using Deep Learning Based On MRI: A Review</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>A, Suganya ; Aarthy, S. L.</creator><creatorcontrib>A, Suganya ; Aarthy, S. L.</creatorcontrib><description>Neurodegenerative disorders present a current challenge for accurate diagnosis and for providing precise prognostic information. Alzheimer’s disease (AD) and Parkinson's disease (PD), may take several years to obtain a definitive diagnosis. Due to the increased aging population in developed countries, neurodegenerative diseases such as AD and PD have become more prevalent and thus new technologies and more accurate tests are needed to improve and accelerate the diagnostic procedure in the early stages of these diseases. Deep learning has shown significant promise in computer-assisted AD and PD diagnosis based on MRI with the widespread use of artificial intelligence in the medical domain. This article analyses and evaluates the effectiveness of existing Deep learning (DL)-based approaches to identify neurological illnesses using MRI data obtained using various modalities, including functional and structural MRI. Several current research issues are identified toward the conclusion, along with several potential future study directions.</description><identifier>ISSN: 2076-0930</identifier><identifier>ISSN: 2073-607X</identifier><identifier>EISSN: 2073-607X</identifier><identifier>EISSN: 2076-0930</identifier><identifier>DOI: 10.17762/ijcnis.v14i1s.5588</identifier><language>eng</language><publisher>Kohat: Kohat University of Science and Technology (KUST)</publisher><subject>Algorithms ; Alzheimer's disease ; Artificial intelligence ; Brain research ; Classification ; Datasets ; Deep learning ; Dementia ; Diagnosis ; Illnesses ; Machine learning ; Magnetic resonance imaging ; Medical imaging ; Nervous system ; Neuroimaging ; New technology ; Parkinson's disease ; Signal transduction ; Tomography</subject><ispartof>International journal of communication networks and information security, 2022, Vol.14 (1s), p.9-21</ispartof><rights>Copyright Kohat University of Science and Technology (KUST) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>A, Suganya</creatorcontrib><creatorcontrib>Aarthy, S. L.</creatorcontrib><title>Alzheimer’s And Parkinson’s Disease Classification Using Deep Learning Based On MRI: A Review</title><title>International journal of communication networks and information security</title><description>Neurodegenerative disorders present a current challenge for accurate diagnosis and for providing precise prognostic information. Alzheimer’s disease (AD) and Parkinson's disease (PD), may take several years to obtain a definitive diagnosis. Due to the increased aging population in developed countries, neurodegenerative diseases such as AD and PD have become more prevalent and thus new technologies and more accurate tests are needed to improve and accelerate the diagnostic procedure in the early stages of these diseases. Deep learning has shown significant promise in computer-assisted AD and PD diagnosis based on MRI with the widespread use of artificial intelligence in the medical domain. This article analyses and evaluates the effectiveness of existing Deep learning (DL)-based approaches to identify neurological illnesses using MRI data obtained using various modalities, including functional and structural MRI. Several current research issues are identified toward the conclusion, along with several potential future study directions.</description><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Artificial intelligence</subject><subject>Brain research</subject><subject>Classification</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Dementia</subject><subject>Diagnosis</subject><subject>Illnesses</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Nervous system</subject><subject>Neuroimaging</subject><subject>New technology</subject><subject>Parkinson's disease</subject><subject>Signal transduction</subject><subject>Tomography</subject><issn>2076-0930</issn><issn>2073-607X</issn><issn>2073-607X</issn><issn>2076-0930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkMtOAjEUhhujiYg-gZsmrgdPL9N23I14I8FgiCTumtrpaBE62AJGV76Gr-eTCIyrc8mX_08-hE4J9IiUgp77qQ0-9daEe5J6ea7UHupQkCwTIJ_2d7vIoGBwiI5SmgIIAVB0kClnX6_Oz138_f5JuAwVfjDxzYfUhN3nyidnksP9mUnJ196apW8CniQfXvCVcws8dCaG7XW54So8Cvh-PLjAJR67tXcfx-igNrPkTv5nF01urh_7d9lwdDvol8PMEk6XGePSSmOfmbAsl2CEKIhiFeSyrpml3ClnFeEVqAK4qGllgRNrCMsZp45b1kVnbe4iNu8rl5Z62qxi2FRqKkVBFXCabyjWUjY2KUVX60X0cxM_NQG9c6lbl7p1qbcu2R9QMWrt</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>A, Suganya</creator><creator>Aarthy, S. L.</creator><general>Kohat University of Science and Technology (KUST)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RQ</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2P</scope><scope>M2T</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>2022</creationdate><title>Alzheimer’s And Parkinson’s Disease Classification Using Deep Learning Based On MRI: A Review</title><author>A, Suganya ; Aarthy, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c142t-347c7acb36c3570a669183d057ff3c24e8ec814d089046f2dc041ca135342e4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Artificial intelligence</topic><topic>Brain research</topic><topic>Classification</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Dementia</topic><topic>Diagnosis</topic><topic>Illnesses</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Nervous system</topic><topic>Neuroimaging</topic><topic>New technology</topic><topic>Parkinson's disease</topic><topic>Signal transduction</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>A, Suganya</creatorcontrib><creatorcontrib>Aarthy, S. L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Career & Technical Education Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of communication networks and information security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>A, Suganya</au><au>Aarthy, S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alzheimer’s And Parkinson’s Disease Classification Using Deep Learning Based On MRI: A Review</atitle><jtitle>International journal of communication networks and information security</jtitle><date>2022</date><risdate>2022</risdate><volume>14</volume><issue>1s</issue><spage>9</spage><epage>21</epage><pages>9-21</pages><issn>2076-0930</issn><issn>2073-607X</issn><eissn>2073-607X</eissn><eissn>2076-0930</eissn><abstract>Neurodegenerative disorders present a current challenge for accurate diagnosis and for providing precise prognostic information. Alzheimer’s disease (AD) and Parkinson's disease (PD), may take several years to obtain a definitive diagnosis. Due to the increased aging population in developed countries, neurodegenerative diseases such as AD and PD have become more prevalent and thus new technologies and more accurate tests are needed to improve and accelerate the diagnostic procedure in the early stages of these diseases. Deep learning has shown significant promise in computer-assisted AD and PD diagnosis based on MRI with the widespread use of artificial intelligence in the medical domain. This article analyses and evaluates the effectiveness of existing Deep learning (DL)-based approaches to identify neurological illnesses using MRI data obtained using various modalities, including functional and structural MRI. Several current research issues are identified toward the conclusion, along with several potential future study directions.</abstract><cop>Kohat</cop><pub>Kohat University of Science and Technology (KUST)</pub><doi>10.17762/ijcnis.v14i1s.5588</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-0930 |
ispartof | International journal of communication networks and information security, 2022, Vol.14 (1s), p.9-21 |
issn | 2076-0930 2073-607X 2073-607X 2076-0930 |
language | eng |
recordid | cdi_proquest_journals_2769280425 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Alzheimer's disease Artificial intelligence Brain research Classification Datasets Deep learning Dementia Diagnosis Illnesses Machine learning Magnetic resonance imaging Medical imaging Nervous system Neuroimaging New technology Parkinson's disease Signal transduction Tomography |
title | Alzheimer’s And Parkinson’s Disease Classification Using Deep Learning Based On MRI: A Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A45%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alzheimer%E2%80%99s%20And%20Parkinson%E2%80%99s%20Disease%20Classification%20Using%20Deep%20Learning%20Based%20On%20MRI:%20A%20Review&rft.jtitle=International%20journal%20of%20communication%20networks%20and%20information%20security&rft.au=A,%20Suganya&rft.date=2022&rft.volume=14&rft.issue=1s&rft.spage=9&rft.epage=21&rft.pages=9-21&rft.issn=2076-0930&rft.eissn=2073-607X&rft_id=info:doi/10.17762/ijcnis.v14i1s.5588&rft_dat=%3Cproquest_cross%3E2769280425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769280425&rft_id=info:pmid/&rfr_iscdi=true |