Alzheimer’s And Parkinson’s Disease Classification Using Deep Learning Based On MRI: A Review

Neurodegenerative disorders present a current challenge for accurate diagnosis and for providing precise prognostic information. Alzheimer’s disease (AD) and Parkinson's disease (PD), may take several years to obtain a definitive diagnosis. Due to the increased aging population in developed cou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of communication networks and information security 2022, Vol.14 (1s), p.9-21
Hauptverfasser: A, Suganya, Aarthy, S. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 1s
container_start_page 9
container_title International journal of communication networks and information security
container_volume 14
creator A, Suganya
Aarthy, S. L.
description Neurodegenerative disorders present a current challenge for accurate diagnosis and for providing precise prognostic information. Alzheimer’s disease (AD) and Parkinson's disease (PD), may take several years to obtain a definitive diagnosis. Due to the increased aging population in developed countries, neurodegenerative diseases such as AD and PD have become more prevalent and thus new technologies and more accurate tests are needed to improve and accelerate the diagnostic procedure in the early stages of these diseases. Deep learning has shown significant promise in computer-assisted AD and PD diagnosis based on MRI with the widespread use of artificial intelligence in the medical domain. This article analyses and evaluates the effectiveness of existing Deep learning (DL)-based approaches to identify neurological illnesses using MRI data obtained using various modalities, including functional and structural MRI. Several current research issues are identified toward the conclusion, along with several potential future study directions.
doi_str_mv 10.17762/ijcnis.v14i1s.5588
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2769280425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2769280425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c142t-347c7acb36c3570a669183d057ff3c24e8ec814d089046f2dc041ca135342e4c3</originalsourceid><addsrcrecordid>eNotkMtOAjEUhhujiYg-gZsmrgdPL9N23I14I8FgiCTumtrpaBE62AJGV76Gr-eTCIyrc8mX_08-hE4J9IiUgp77qQ0-9daEe5J6ea7UHupQkCwTIJ_2d7vIoGBwiI5SmgIIAVB0kClnX6_Oz138_f5JuAwVfjDxzYfUhN3nyidnksP9mUnJ196apW8CniQfXvCVcws8dCaG7XW54So8Cvh-PLjAJR67tXcfx-igNrPkTv5nF01urh_7d9lwdDvol8PMEk6XGePSSmOfmbAsl2CEKIhiFeSyrpml3ClnFeEVqAK4qGllgRNrCMsZp45b1kVnbe4iNu8rl5Z62qxi2FRqKkVBFXCabyjWUjY2KUVX60X0cxM_NQG9c6lbl7p1qbcu2R9QMWrt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769280425</pqid></control><display><type>article</type><title>Alzheimer’s And Parkinson’s Disease Classification Using Deep Learning Based On MRI: A Review</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>A, Suganya ; Aarthy, S. L.</creator><creatorcontrib>A, Suganya ; Aarthy, S. L.</creatorcontrib><description>Neurodegenerative disorders present a current challenge for accurate diagnosis and for providing precise prognostic information. Alzheimer’s disease (AD) and Parkinson's disease (PD), may take several years to obtain a definitive diagnosis. Due to the increased aging population in developed countries, neurodegenerative diseases such as AD and PD have become more prevalent and thus new technologies and more accurate tests are needed to improve and accelerate the diagnostic procedure in the early stages of these diseases. Deep learning has shown significant promise in computer-assisted AD and PD diagnosis based on MRI with the widespread use of artificial intelligence in the medical domain. This article analyses and evaluates the effectiveness of existing Deep learning (DL)-based approaches to identify neurological illnesses using MRI data obtained using various modalities, including functional and structural MRI. Several current research issues are identified toward the conclusion, along with several potential future study directions.</description><identifier>ISSN: 2076-0930</identifier><identifier>ISSN: 2073-607X</identifier><identifier>EISSN: 2073-607X</identifier><identifier>EISSN: 2076-0930</identifier><identifier>DOI: 10.17762/ijcnis.v14i1s.5588</identifier><language>eng</language><publisher>Kohat: Kohat University of Science and Technology (KUST)</publisher><subject>Algorithms ; Alzheimer's disease ; Artificial intelligence ; Brain research ; Classification ; Datasets ; Deep learning ; Dementia ; Diagnosis ; Illnesses ; Machine learning ; Magnetic resonance imaging ; Medical imaging ; Nervous system ; Neuroimaging ; New technology ; Parkinson's disease ; Signal transduction ; Tomography</subject><ispartof>International journal of communication networks and information security, 2022, Vol.14 (1s), p.9-21</ispartof><rights>Copyright Kohat University of Science and Technology (KUST) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>A, Suganya</creatorcontrib><creatorcontrib>Aarthy, S. L.</creatorcontrib><title>Alzheimer’s And Parkinson’s Disease Classification Using Deep Learning Based On MRI: A Review</title><title>International journal of communication networks and information security</title><description>Neurodegenerative disorders present a current challenge for accurate diagnosis and for providing precise prognostic information. Alzheimer’s disease (AD) and Parkinson's disease (PD), may take several years to obtain a definitive diagnosis. Due to the increased aging population in developed countries, neurodegenerative diseases such as AD and PD have become more prevalent and thus new technologies and more accurate tests are needed to improve and accelerate the diagnostic procedure in the early stages of these diseases. Deep learning has shown significant promise in computer-assisted AD and PD diagnosis based on MRI with the widespread use of artificial intelligence in the medical domain. This article analyses and evaluates the effectiveness of existing Deep learning (DL)-based approaches to identify neurological illnesses using MRI data obtained using various modalities, including functional and structural MRI. Several current research issues are identified toward the conclusion, along with several potential future study directions.</description><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Artificial intelligence</subject><subject>Brain research</subject><subject>Classification</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Dementia</subject><subject>Diagnosis</subject><subject>Illnesses</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Nervous system</subject><subject>Neuroimaging</subject><subject>New technology</subject><subject>Parkinson's disease</subject><subject>Signal transduction</subject><subject>Tomography</subject><issn>2076-0930</issn><issn>2073-607X</issn><issn>2073-607X</issn><issn>2076-0930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkMtOAjEUhhujiYg-gZsmrgdPL9N23I14I8FgiCTumtrpaBE62AJGV76Gr-eTCIyrc8mX_08-hE4J9IiUgp77qQ0-9daEe5J6ea7UHupQkCwTIJ_2d7vIoGBwiI5SmgIIAVB0kClnX6_Oz138_f5JuAwVfjDxzYfUhN3nyidnksP9mUnJ196apW8CniQfXvCVcws8dCaG7XW54So8Cvh-PLjAJR67tXcfx-igNrPkTv5nF01urh_7d9lwdDvol8PMEk6XGePSSmOfmbAsl2CEKIhiFeSyrpml3ClnFeEVqAK4qGllgRNrCMsZp45b1kVnbe4iNu8rl5Z62qxi2FRqKkVBFXCabyjWUjY2KUVX60X0cxM_NQG9c6lbl7p1qbcu2R9QMWrt</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>A, Suganya</creator><creator>Aarthy, S. L.</creator><general>Kohat University of Science and Technology (KUST)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RQ</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2P</scope><scope>M2T</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>2022</creationdate><title>Alzheimer’s And Parkinson’s Disease Classification Using Deep Learning Based On MRI: A Review</title><author>A, Suganya ; Aarthy, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c142t-347c7acb36c3570a669183d057ff3c24e8ec814d089046f2dc041ca135342e4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Artificial intelligence</topic><topic>Brain research</topic><topic>Classification</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Dementia</topic><topic>Diagnosis</topic><topic>Illnesses</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Nervous system</topic><topic>Neuroimaging</topic><topic>New technology</topic><topic>Parkinson's disease</topic><topic>Signal transduction</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>A, Suganya</creatorcontrib><creatorcontrib>Aarthy, S. L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Career &amp; Technical Education Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of communication networks and information security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>A, Suganya</au><au>Aarthy, S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alzheimer’s And Parkinson’s Disease Classification Using Deep Learning Based On MRI: A Review</atitle><jtitle>International journal of communication networks and information security</jtitle><date>2022</date><risdate>2022</risdate><volume>14</volume><issue>1s</issue><spage>9</spage><epage>21</epage><pages>9-21</pages><issn>2076-0930</issn><issn>2073-607X</issn><eissn>2073-607X</eissn><eissn>2076-0930</eissn><abstract>Neurodegenerative disorders present a current challenge for accurate diagnosis and for providing precise prognostic information. Alzheimer’s disease (AD) and Parkinson's disease (PD), may take several years to obtain a definitive diagnosis. Due to the increased aging population in developed countries, neurodegenerative diseases such as AD and PD have become more prevalent and thus new technologies and more accurate tests are needed to improve and accelerate the diagnostic procedure in the early stages of these diseases. Deep learning has shown significant promise in computer-assisted AD and PD diagnosis based on MRI with the widespread use of artificial intelligence in the medical domain. This article analyses and evaluates the effectiveness of existing Deep learning (DL)-based approaches to identify neurological illnesses using MRI data obtained using various modalities, including functional and structural MRI. Several current research issues are identified toward the conclusion, along with several potential future study directions.</abstract><cop>Kohat</cop><pub>Kohat University of Science and Technology (KUST)</pub><doi>10.17762/ijcnis.v14i1s.5588</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2076-0930
ispartof International journal of communication networks and information security, 2022, Vol.14 (1s), p.9-21
issn 2076-0930
2073-607X
2073-607X
2076-0930
language eng
recordid cdi_proquest_journals_2769280425
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Alzheimer's disease
Artificial intelligence
Brain research
Classification
Datasets
Deep learning
Dementia
Diagnosis
Illnesses
Machine learning
Magnetic resonance imaging
Medical imaging
Nervous system
Neuroimaging
New technology
Parkinson's disease
Signal transduction
Tomography
title Alzheimer’s And Parkinson’s Disease Classification Using Deep Learning Based On MRI: A Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A45%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alzheimer%E2%80%99s%20And%20Parkinson%E2%80%99s%20Disease%20Classification%20Using%20Deep%20Learning%20Based%20On%20MRI:%20A%20Review&rft.jtitle=International%20journal%20of%20communication%20networks%20and%20information%20security&rft.au=A,%20Suganya&rft.date=2022&rft.volume=14&rft.issue=1s&rft.spage=9&rft.epage=21&rft.pages=9-21&rft.issn=2076-0930&rft.eissn=2073-607X&rft_id=info:doi/10.17762/ijcnis.v14i1s.5588&rft_dat=%3Cproquest_cross%3E2769280425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769280425&rft_id=info:pmid/&rfr_iscdi=true