On the h-adic Quantum Vertex Algebras Associated with Hecke Symmetries

We study the quantum vertex algebraic framework for the Yangians of RTT-type and the braided Yangians associated with Hecke symmetries, introduced by Gurevich and Saponov. First, we construct several families of modules for the aforementioned Yangian-like algebras which, in the RTT-type case, lead t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2023, Vol.397 (2), p.607-634
1. Verfasser: Slaven, Kožić
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 634
container_issue 2
container_start_page 607
container_title Communications in mathematical physics
container_volume 397
creator Slaven, Kožić
description We study the quantum vertex algebraic framework for the Yangians of RTT-type and the braided Yangians associated with Hecke symmetries, introduced by Gurevich and Saponov. First, we construct several families of modules for the aforementioned Yangian-like algebras which, in the RTT-type case, lead to a certain h -adic quantum vertex algebra V c ( R ) via the Etingof–Kazhdan construction, while, in the braided case, they produce ( ϕ -coordinated) V c ( R ) -modules. Next, we show that the coefficients of suitably defined quantum determinant can be used to obtain central elements of V c ( R ) , as well as the invariants of such ( ϕ -coordinated) V c ( R ) -modules. Finally, we investigate a certain algebra which is closely connected with the representation theory of V c ( R ) .
doi_str_mv 10.1007/s00220-022-04498-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2769250050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2769250050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-9c0db2645450c6306f4553d3d0dc2f09126ba30f9fca32fd8c6e9aa21f1640f33</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmMWlnWYq1QqGIj21I82indmZqksH23xsdwZ2bc7nwnXMvB6FrCrcUYHQXARgDkoWAEOWYiBM0oILntaTyFA0AKBAuqTxHFzFuAaBkUg7QbNngtHF4Q7StDH7qdJO6Gr-5kNwBT3Zrtwo64kmMral0chZ_VmmD5868O_x8rGuXQuXiJTrzehfd1e8cotfZ_ct0ThbLh8fpZEEMG0EipQG7YlIUogAjOUgvioJbbsEa5vOrTK40B196oznzdmykK7Vm1FMpwHM-RDd97j60H52LSW3bLjT5pGIjWbICoIBMsZ4yoY0xOK_2oap1OCoK6rsv1felsqifvpTIJt6bYoabtQt_0f-4vgC3-Ww3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769250050</pqid></control><display><type>article</type><title>On the h-adic Quantum Vertex Algebras Associated with Hecke Symmetries</title><source>SpringerLink Journals - AutoHoldings</source><creator>Slaven, Kožić</creator><creatorcontrib>Slaven, Kožić</creatorcontrib><description>We study the quantum vertex algebraic framework for the Yangians of RTT-type and the braided Yangians associated with Hecke symmetries, introduced by Gurevich and Saponov. First, we construct several families of modules for the aforementioned Yangian-like algebras which, in the RTT-type case, lead to a certain h -adic quantum vertex algebra V c ( R ) via the Etingof–Kazhdan construction, while, in the braided case, they produce ( ϕ -coordinated) V c ( R ) -modules. Next, we show that the coefficients of suitably defined quantum determinant can be used to obtain central elements of V c ( R ) , as well as the invariants of such ( ϕ -coordinated) V c ( R ) -modules. Finally, we investigate a certain algebra which is closely connected with the representation theory of V c ( R ) .</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-022-04498-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Braiding ; Classical and Quantum Gravitation ; Complex Systems ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Physics ; Modules ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2023, Vol.397 (2), p.607-634</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-9c0db2645450c6306f4553d3d0dc2f09126ba30f9fca32fd8c6e9aa21f1640f33</cites><orcidid>0000-0003-2276-3271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-022-04498-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-022-04498-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Slaven, Kožić</creatorcontrib><title>On the h-adic Quantum Vertex Algebras Associated with Hecke Symmetries</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We study the quantum vertex algebraic framework for the Yangians of RTT-type and the braided Yangians associated with Hecke symmetries, introduced by Gurevich and Saponov. First, we construct several families of modules for the aforementioned Yangian-like algebras which, in the RTT-type case, lead to a certain h -adic quantum vertex algebra V c ( R ) via the Etingof–Kazhdan construction, while, in the braided case, they produce ( ϕ -coordinated) V c ( R ) -modules. Next, we show that the coefficients of suitably defined quantum determinant can be used to obtain central elements of V c ( R ) , as well as the invariants of such ( ϕ -coordinated) V c ( R ) -modules. Finally, we investigate a certain algebra which is closely connected with the representation theory of V c ( R ) .</description><subject>Algebra</subject><subject>Braiding</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Modules</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmMWlnWYq1QqGIj21I82indmZqksH23xsdwZ2bc7nwnXMvB6FrCrcUYHQXARgDkoWAEOWYiBM0oILntaTyFA0AKBAuqTxHFzFuAaBkUg7QbNngtHF4Q7StDH7qdJO6Gr-5kNwBT3Zrtwo64kmMral0chZ_VmmD5868O_x8rGuXQuXiJTrzehfd1e8cotfZ_ct0ThbLh8fpZEEMG0EipQG7YlIUogAjOUgvioJbbsEa5vOrTK40B196oznzdmykK7Vm1FMpwHM-RDd97j60H52LSW3bLjT5pGIjWbICoIBMsZ4yoY0xOK_2oap1OCoK6rsv1felsqifvpTIJt6bYoabtQt_0f-4vgC3-Ww3</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Slaven, Kožić</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2276-3271</orcidid></search><sort><creationdate>2023</creationdate><title>On the h-adic Quantum Vertex Algebras Associated with Hecke Symmetries</title><author>Slaven, Kožić</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-9c0db2645450c6306f4553d3d0dc2f09126ba30f9fca32fd8c6e9aa21f1640f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Braiding</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Modules</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slaven, Kožić</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slaven, Kožić</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the h-adic Quantum Vertex Algebras Associated with Hecke Symmetries</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2023</date><risdate>2023</risdate><volume>397</volume><issue>2</issue><spage>607</spage><epage>634</epage><pages>607-634</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We study the quantum vertex algebraic framework for the Yangians of RTT-type and the braided Yangians associated with Hecke symmetries, introduced by Gurevich and Saponov. First, we construct several families of modules for the aforementioned Yangian-like algebras which, in the RTT-type case, lead to a certain h -adic quantum vertex algebra V c ( R ) via the Etingof–Kazhdan construction, while, in the braided case, they produce ( ϕ -coordinated) V c ( R ) -modules. Next, we show that the coefficients of suitably defined quantum determinant can be used to obtain central elements of V c ( R ) , as well as the invariants of such ( ϕ -coordinated) V c ( R ) -modules. Finally, we investigate a certain algebra which is closely connected with the representation theory of V c ( R ) .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-022-04498-4</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-2276-3271</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2023, Vol.397 (2), p.607-634
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2769250050
source SpringerLink Journals - AutoHoldings
subjects Algebra
Braiding
Classical and Quantum Gravitation
Complex Systems
Mathematical analysis
Mathematical and Computational Physics
Mathematical Physics
Modules
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Theoretical
title On the h-adic Quantum Vertex Algebras Associated with Hecke Symmetries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A17%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20h-adic%20Quantum%20Vertex%20Algebras%20Associated%20with%20Hecke%20Symmetries&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Slaven,%20Ko%C5%BEi%C4%87&rft.date=2023&rft.volume=397&rft.issue=2&rft.spage=607&rft.epage=634&rft.pages=607-634&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-022-04498-4&rft_dat=%3Cproquest_cross%3E2769250050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769250050&rft_id=info:pmid/&rfr_iscdi=true