Human pose estimation for low-resolution image using 1-D heatmaps and offset regression

Running a reliable network on resource-limited platforms for a low-resolution image is a great challenge for heatmap-based human pose estimation (HPE). Scale mismatch between the input image and heatmaps and the intrinsic quantization effect induced by the ‘argmax’ function hinder the performance of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2023-02, Vol.82 (4), p.6289-6307
Hauptverfasser: Chi, Cailong, Zhang, Dong, Zhu, Zhesi, Wang, Xingzhi, Lee, Dah-Jye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6307
container_issue 4
container_start_page 6289
container_title Multimedia tools and applications
container_volume 82
creator Chi, Cailong
Zhang, Dong
Zhu, Zhesi
Wang, Xingzhi
Lee, Dah-Jye
description Running a reliable network on resource-limited platforms for a low-resolution image is a great challenge for heatmap-based human pose estimation (HPE). Scale mismatch between the input image and heatmaps and the intrinsic quantization effect induced by the ‘argmax’ function hinder the performance of heatmap-based human pose estimation for low-resolution image. In this paper, we propose a coordinate-decoupled and offset-revised module (CDORM) to tackle these challenges. The proposed CDORM uses two coordinate-decoupled 1-D heatmaps to supervise the regression process of determining the horizontal and vertical locations of human joints, and employs offset regressing to alleviate the effect of quantization. The CDORM can be integrated with any current heatmap-based HPE network without increasing the size of network significantly. Experimental results on the COCO and MPII datasets show that CDORM helps heatmap-based regression approaches obtain high estimation accuracy from the low-resolution image and only slightly increases the size and runtime of the network.
doi_str_mv 10.1007/s11042-022-13468-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2768984118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2768984118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-acfc1723603b6f5684876ff01a639c13b0d584d4a95c451e79455646b84c94863</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczST_3uUqq1Q8KJ4DOk2WVvazZrsUvz2xq7gzdMMM-83w3sIXQO9BUr1XQagghHKGAEulCGHEzQBqTnRmsFp6bmhREsK5-gi5y2loCQTE_S-GPauxV3MHvvcb_au38QWh5jwLh5I8jnuhuOorBqPh7xpGwzkAX941-9dl7Fr1ziGkH2Pk28KkYv8Ep0Ft8v-6rdO0dvT4-tsQZYv8-fZ_ZLUHKqeuDrUoBlXlK9UkMoIo1UIFJziVQ18RdfSiLVwlayFBK8rIaUSamVEXQmj-BTdjHe7FD-H4sBu45Da8tIyrUxlBIApKjaq6hRzTj7YLhU_6csCtT8B2jFAWwK0xwDtoUB8hHIRt41Pf6f_ob4BciVzKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2768984118</pqid></control><display><type>article</type><title>Human pose estimation for low-resolution image using 1-D heatmaps and offset regression</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chi, Cailong ; Zhang, Dong ; Zhu, Zhesi ; Wang, Xingzhi ; Lee, Dah-Jye</creator><creatorcontrib>Chi, Cailong ; Zhang, Dong ; Zhu, Zhesi ; Wang, Xingzhi ; Lee, Dah-Jye</creatorcontrib><description>Running a reliable network on resource-limited platforms for a low-resolution image is a great challenge for heatmap-based human pose estimation (HPE). Scale mismatch between the input image and heatmaps and the intrinsic quantization effect induced by the ‘argmax’ function hinder the performance of heatmap-based human pose estimation for low-resolution image. In this paper, we propose a coordinate-decoupled and offset-revised module (CDORM) to tackle these challenges. The proposed CDORM uses two coordinate-decoupled 1-D heatmaps to supervise the regression process of determining the horizontal and vertical locations of human joints, and employs offset regressing to alleviate the effect of quantization. The CDORM can be integrated with any current heatmap-based HPE network without increasing the size of network significantly. Experimental results on the COCO and MPII datasets show that CDORM helps heatmap-based regression approaches obtain high estimation accuracy from the low-resolution image and only slightly increases the size and runtime of the network.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-022-13468-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Datasets ; Human performance ; Image resolution ; Measurement ; Multimedia ; Multimedia Information Systems ; Neural networks ; Pose estimation ; Regression ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2023-02, Vol.82 (4), p.6289-6307</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-acfc1723603b6f5684876ff01a639c13b0d584d4a95c451e79455646b84c94863</citedby><cites>FETCH-LOGICAL-c319t-acfc1723603b6f5684876ff01a639c13b0d584d4a95c451e79455646b84c94863</cites><orcidid>0000-0003-0825-3400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-022-13468-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-022-13468-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Chi, Cailong</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Zhu, Zhesi</creatorcontrib><creatorcontrib>Wang, Xingzhi</creatorcontrib><creatorcontrib>Lee, Dah-Jye</creatorcontrib><title>Human pose estimation for low-resolution image using 1-D heatmaps and offset regression</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Running a reliable network on resource-limited platforms for a low-resolution image is a great challenge for heatmap-based human pose estimation (HPE). Scale mismatch between the input image and heatmaps and the intrinsic quantization effect induced by the ‘argmax’ function hinder the performance of heatmap-based human pose estimation for low-resolution image. In this paper, we propose a coordinate-decoupled and offset-revised module (CDORM) to tackle these challenges. The proposed CDORM uses two coordinate-decoupled 1-D heatmaps to supervise the regression process of determining the horizontal and vertical locations of human joints, and employs offset regressing to alleviate the effect of quantization. The CDORM can be integrated with any current heatmap-based HPE network without increasing the size of network significantly. Experimental results on the COCO and MPII datasets show that CDORM helps heatmap-based regression approaches obtain high estimation accuracy from the low-resolution image and only slightly increases the size and runtime of the network.</description><subject>Accuracy</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Human performance</subject><subject>Image resolution</subject><subject>Measurement</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Pose estimation</subject><subject>Regression</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczST_3uUqq1Q8KJ4DOk2WVvazZrsUvz2xq7gzdMMM-83w3sIXQO9BUr1XQagghHKGAEulCGHEzQBqTnRmsFp6bmhREsK5-gi5y2loCQTE_S-GPauxV3MHvvcb_au38QWh5jwLh5I8jnuhuOorBqPh7xpGwzkAX941-9dl7Fr1ziGkH2Pk28KkYv8Ep0Ft8v-6rdO0dvT4-tsQZYv8-fZ_ZLUHKqeuDrUoBlXlK9UkMoIo1UIFJziVQ18RdfSiLVwlayFBK8rIaUSamVEXQmj-BTdjHe7FD-H4sBu45Da8tIyrUxlBIApKjaq6hRzTj7YLhU_6csCtT8B2jFAWwK0xwDtoUB8hHIRt41Pf6f_ob4BciVzKQ</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Chi, Cailong</creator><creator>Zhang, Dong</creator><creator>Zhu, Zhesi</creator><creator>Wang, Xingzhi</creator><creator>Lee, Dah-Jye</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0825-3400</orcidid></search><sort><creationdate>20230201</creationdate><title>Human pose estimation for low-resolution image using 1-D heatmaps and offset regression</title><author>Chi, Cailong ; Zhang, Dong ; Zhu, Zhesi ; Wang, Xingzhi ; Lee, Dah-Jye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-acfc1723603b6f5684876ff01a639c13b0d584d4a95c451e79455646b84c94863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Human performance</topic><topic>Image resolution</topic><topic>Measurement</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Pose estimation</topic><topic>Regression</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chi, Cailong</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Zhu, Zhesi</creatorcontrib><creatorcontrib>Wang, Xingzhi</creatorcontrib><creatorcontrib>Lee, Dah-Jye</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chi, Cailong</au><au>Zhang, Dong</au><au>Zhu, Zhesi</au><au>Wang, Xingzhi</au><au>Lee, Dah-Jye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human pose estimation for low-resolution image using 1-D heatmaps and offset regression</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>82</volume><issue>4</issue><spage>6289</spage><epage>6307</epage><pages>6289-6307</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Running a reliable network on resource-limited platforms for a low-resolution image is a great challenge for heatmap-based human pose estimation (HPE). Scale mismatch between the input image and heatmaps and the intrinsic quantization effect induced by the ‘argmax’ function hinder the performance of heatmap-based human pose estimation for low-resolution image. In this paper, we propose a coordinate-decoupled and offset-revised module (CDORM) to tackle these challenges. The proposed CDORM uses two coordinate-decoupled 1-D heatmaps to supervise the regression process of determining the horizontal and vertical locations of human joints, and employs offset regressing to alleviate the effect of quantization. The CDORM can be integrated with any current heatmap-based HPE network without increasing the size of network significantly. Experimental results on the COCO and MPII datasets show that CDORM helps heatmap-based regression approaches obtain high estimation accuracy from the low-resolution image and only slightly increases the size and runtime of the network.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-022-13468-w</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0825-3400</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2023-02, Vol.82 (4), p.6289-6307
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2768984118
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Datasets
Human performance
Image resolution
Measurement
Multimedia
Multimedia Information Systems
Neural networks
Pose estimation
Regression
Special Purpose and Application-Based Systems
title Human pose estimation for low-resolution image using 1-D heatmaps and offset regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20pose%20estimation%20for%20low-resolution%20image%20using%201-D%20heatmaps%20and%20offset%20regression&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Chi,%20Cailong&rft.date=2023-02-01&rft.volume=82&rft.issue=4&rft.spage=6289&rft.epage=6307&rft.pages=6289-6307&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-022-13468-w&rft_dat=%3Cproquest_cross%3E2768984118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2768984118&rft_id=info:pmid/&rfr_iscdi=true