Human pose estimation for low-resolution image using 1-D heatmaps and offset regression
Running a reliable network on resource-limited platforms for a low-resolution image is a great challenge for heatmap-based human pose estimation (HPE). Scale mismatch between the input image and heatmaps and the intrinsic quantization effect induced by the ‘argmax’ function hinder the performance of...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2023-02, Vol.82 (4), p.6289-6307 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6307 |
---|---|
container_issue | 4 |
container_start_page | 6289 |
container_title | Multimedia tools and applications |
container_volume | 82 |
creator | Chi, Cailong Zhang, Dong Zhu, Zhesi Wang, Xingzhi Lee, Dah-Jye |
description | Running a reliable network on resource-limited platforms for a low-resolution image is a great challenge for heatmap-based human pose estimation (HPE). Scale mismatch between the input image and heatmaps and the intrinsic quantization effect induced by the ‘argmax’ function hinder the performance of heatmap-based human pose estimation for low-resolution image. In this paper, we propose a coordinate-decoupled and offset-revised module (CDORM) to tackle these challenges. The proposed CDORM uses two coordinate-decoupled 1-D heatmaps to supervise the regression process of determining the horizontal and vertical locations of human joints, and employs offset regressing to alleviate the effect of quantization. The CDORM can be integrated with any current heatmap-based HPE network without increasing the size of network significantly. Experimental results on the COCO and MPII datasets show that CDORM helps heatmap-based regression approaches obtain high estimation accuracy from the low-resolution image and only slightly increases the size and runtime of the network. |
doi_str_mv | 10.1007/s11042-022-13468-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2768984118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2768984118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-acfc1723603b6f5684876ff01a639c13b0d584d4a95c451e79455646b84c94863</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczST_3uUqq1Q8KJ4DOk2WVvazZrsUvz2xq7gzdMMM-83w3sIXQO9BUr1XQagghHKGAEulCGHEzQBqTnRmsFp6bmhREsK5-gi5y2loCQTE_S-GPauxV3MHvvcb_au38QWh5jwLh5I8jnuhuOorBqPh7xpGwzkAX941-9dl7Fr1ziGkH2Pk28KkYv8Ep0Ft8v-6rdO0dvT4-tsQZYv8-fZ_ZLUHKqeuDrUoBlXlK9UkMoIo1UIFJziVQ18RdfSiLVwlayFBK8rIaUSamVEXQmj-BTdjHe7FD-H4sBu45Da8tIyrUxlBIApKjaq6hRzTj7YLhU_6csCtT8B2jFAWwK0xwDtoUB8hHIRt41Pf6f_ob4BciVzKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2768984118</pqid></control><display><type>article</type><title>Human pose estimation for low-resolution image using 1-D heatmaps and offset regression</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chi, Cailong ; Zhang, Dong ; Zhu, Zhesi ; Wang, Xingzhi ; Lee, Dah-Jye</creator><creatorcontrib>Chi, Cailong ; Zhang, Dong ; Zhu, Zhesi ; Wang, Xingzhi ; Lee, Dah-Jye</creatorcontrib><description>Running a reliable network on resource-limited platforms for a low-resolution image is a great challenge for heatmap-based human pose estimation (HPE). Scale mismatch between the input image and heatmaps and the intrinsic quantization effect induced by the ‘argmax’ function hinder the performance of heatmap-based human pose estimation for low-resolution image. In this paper, we propose a coordinate-decoupled and offset-revised module (CDORM) to tackle these challenges. The proposed CDORM uses two coordinate-decoupled 1-D heatmaps to supervise the regression process of determining the horizontal and vertical locations of human joints, and employs offset regressing to alleviate the effect of quantization. The CDORM can be integrated with any current heatmap-based HPE network without increasing the size of network significantly. Experimental results on the COCO and MPII datasets show that CDORM helps heatmap-based regression approaches obtain high estimation accuracy from the low-resolution image and only slightly increases the size and runtime of the network.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-022-13468-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Datasets ; Human performance ; Image resolution ; Measurement ; Multimedia ; Multimedia Information Systems ; Neural networks ; Pose estimation ; Regression ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2023-02, Vol.82 (4), p.6289-6307</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-acfc1723603b6f5684876ff01a639c13b0d584d4a95c451e79455646b84c94863</citedby><cites>FETCH-LOGICAL-c319t-acfc1723603b6f5684876ff01a639c13b0d584d4a95c451e79455646b84c94863</cites><orcidid>0000-0003-0825-3400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-022-13468-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-022-13468-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Chi, Cailong</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Zhu, Zhesi</creatorcontrib><creatorcontrib>Wang, Xingzhi</creatorcontrib><creatorcontrib>Lee, Dah-Jye</creatorcontrib><title>Human pose estimation for low-resolution image using 1-D heatmaps and offset regression</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Running a reliable network on resource-limited platforms for a low-resolution image is a great challenge for heatmap-based human pose estimation (HPE). Scale mismatch between the input image and heatmaps and the intrinsic quantization effect induced by the ‘argmax’ function hinder the performance of heatmap-based human pose estimation for low-resolution image. In this paper, we propose a coordinate-decoupled and offset-revised module (CDORM) to tackle these challenges. The proposed CDORM uses two coordinate-decoupled 1-D heatmaps to supervise the regression process of determining the horizontal and vertical locations of human joints, and employs offset regressing to alleviate the effect of quantization. The CDORM can be integrated with any current heatmap-based HPE network without increasing the size of network significantly. Experimental results on the COCO and MPII datasets show that CDORM helps heatmap-based regression approaches obtain high estimation accuracy from the low-resolution image and only slightly increases the size and runtime of the network.</description><subject>Accuracy</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Human performance</subject><subject>Image resolution</subject><subject>Measurement</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Pose estimation</subject><subject>Regression</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczST_3uUqq1Q8KJ4DOk2WVvazZrsUvz2xq7gzdMMM-83w3sIXQO9BUr1XQagghHKGAEulCGHEzQBqTnRmsFp6bmhREsK5-gi5y2loCQTE_S-GPauxV3MHvvcb_au38QWh5jwLh5I8jnuhuOorBqPh7xpGwzkAX941-9dl7Fr1ziGkH2Pk28KkYv8Ep0Ft8v-6rdO0dvT4-tsQZYv8-fZ_ZLUHKqeuDrUoBlXlK9UkMoIo1UIFJziVQ18RdfSiLVwlayFBK8rIaUSamVEXQmj-BTdjHe7FD-H4sBu45Da8tIyrUxlBIApKjaq6hRzTj7YLhU_6csCtT8B2jFAWwK0xwDtoUB8hHIRt41Pf6f_ob4BciVzKQ</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Chi, Cailong</creator><creator>Zhang, Dong</creator><creator>Zhu, Zhesi</creator><creator>Wang, Xingzhi</creator><creator>Lee, Dah-Jye</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0825-3400</orcidid></search><sort><creationdate>20230201</creationdate><title>Human pose estimation for low-resolution image using 1-D heatmaps and offset regression</title><author>Chi, Cailong ; Zhang, Dong ; Zhu, Zhesi ; Wang, Xingzhi ; Lee, Dah-Jye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-acfc1723603b6f5684876ff01a639c13b0d584d4a95c451e79455646b84c94863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Human performance</topic><topic>Image resolution</topic><topic>Measurement</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Pose estimation</topic><topic>Regression</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chi, Cailong</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Zhu, Zhesi</creatorcontrib><creatorcontrib>Wang, Xingzhi</creatorcontrib><creatorcontrib>Lee, Dah-Jye</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chi, Cailong</au><au>Zhang, Dong</au><au>Zhu, Zhesi</au><au>Wang, Xingzhi</au><au>Lee, Dah-Jye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human pose estimation for low-resolution image using 1-D heatmaps and offset regression</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>82</volume><issue>4</issue><spage>6289</spage><epage>6307</epage><pages>6289-6307</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Running a reliable network on resource-limited platforms for a low-resolution image is a great challenge for heatmap-based human pose estimation (HPE). Scale mismatch between the input image and heatmaps and the intrinsic quantization effect induced by the ‘argmax’ function hinder the performance of heatmap-based human pose estimation for low-resolution image. In this paper, we propose a coordinate-decoupled and offset-revised module (CDORM) to tackle these challenges. The proposed CDORM uses two coordinate-decoupled 1-D heatmaps to supervise the regression process of determining the horizontal and vertical locations of human joints, and employs offset regressing to alleviate the effect of quantization. The CDORM can be integrated with any current heatmap-based HPE network without increasing the size of network significantly. Experimental results on the COCO and MPII datasets show that CDORM helps heatmap-based regression approaches obtain high estimation accuracy from the low-resolution image and only slightly increases the size and runtime of the network.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-022-13468-w</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0825-3400</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2023-02, Vol.82 (4), p.6289-6307 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2768984118 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accuracy Computer Communication Networks Computer Science Data Structures and Information Theory Datasets Human performance Image resolution Measurement Multimedia Multimedia Information Systems Neural networks Pose estimation Regression Special Purpose and Application-Based Systems |
title | Human pose estimation for low-resolution image using 1-D heatmaps and offset regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20pose%20estimation%20for%20low-resolution%20image%20using%201-D%20heatmaps%20and%20offset%20regression&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Chi,%20Cailong&rft.date=2023-02-01&rft.volume=82&rft.issue=4&rft.spage=6289&rft.epage=6307&rft.pages=6289-6307&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-022-13468-w&rft_dat=%3Cproquest_cross%3E2768984118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2768984118&rft_id=info:pmid/&rfr_iscdi=true |