On the Implementation of Approximate Randomization Tests in Linear Models with a Small Number of Clusters

This paper provides a user’s guide to the general theory of approximate randomization tests developed in Canay, Romano, and Shaikh (2017a. “Randomization Tests under an Approximate Symmetry Assumption.” Econometrica 85 (3): 1013–30) when specialized to linear regressions with clustered data. An impo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometric methods 2023-01, Vol.12 (1), p.85-103
Hauptverfasser: Cai, Yong, Canay, Ivan A., Kim, Deborah, Shaikh, Azeem M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103
container_issue 1
container_start_page 85
container_title Journal of econometric methods
container_volume 12
creator Cai, Yong
Canay, Ivan A.
Kim, Deborah
Shaikh, Azeem M.
description This paper provides a user’s guide to the general theory of approximate randomization tests developed in Canay, Romano, and Shaikh (2017a. “Randomization Tests under an Approximate Symmetry Assumption.” Econometrica 85 (3): 1013–30) when specialized to linear regressions with clustered data. An important feature of the methodology is that it applies to settings in which the number of clusters is small – even as small as five. We provide a step-by-step algorithmic description of how to implement the test and construct confidence intervals for the parameter of interest. In doing so, we additionally present three novel results concerning the methodology: we show that the method admits an equivalent implementation based on weighted scores; we show the test and confidence intervals are invariant to whether the test statistic is studentized or not; and we prove convexity of the confidence intervals for scalar parameters. We also articulate the main requirements underlying the test, emphasizing in particular common pitfalls that researchers may encounter. Finally, we illustrate the use of the methodology with two applications that further illuminate these points: one to a linear regression with clustered data based on Meng, Qian, and Yared (2015. “The Institutional Causes of china’s Great Famine, 1959–1961.” The Review of Economic Studies 82 (4): 1568–611) and a second to a linear regression with temporally dependent data based on Munyo and Rossi (2015. “First-day Criminal Recidivism.” Journal of Public Economics 124: 81–90). The companion and packages facilitate the implementation of the methodology and the replication of the empirical exercises.
doi_str_mv 10.1515/jem-2021-0030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2768958256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2768958256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2195-d26ef0f07d70e086b9a2525d30bdf3bd599f39e50b2fcc2bf9ed6dd0b57df7883</originalsourceid><addsrcrecordid>eNptkM1LAzEQxRdRsGiP3gOeV5Nsk028leJHoVrQel6ym4lN2S-TXWr9682yQj04lxmYH-_NvCi6IviGMMJud1DFFFMSY5zgk2hCCeMx5-ns9M98Hk293-FQbCYo5ZPIrmvUbQEtq7aECupOdbapUWPQvG1d82Ur1QF6VbVuKvs9LjfgO49sjVa2BuXQc6Oh9Ghvuy1S6K1SZYle-ioHN-gsyt534PxldGZU6WH62y-i94f7zeIpXq0fl4v5Ki4okSzWlIPBBqc6xYAFz6WijDKd4FybJNdMSpNIYDinpihobiRorjXOWapNKkRyEV2PuuH8zz6cmu2a3tXBMqMpF5IJynig4pEqXOO9A5O1LvzqDhnB2RBoFgLNhkCzIdDAo5GHoqmtP9IiSUNhORjfjcheleFhDR-uP4Th6P-vNKFEsOQHj8OHLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2768958256</pqid></control><display><type>article</type><title>On the Implementation of Approximate Randomization Tests in Linear Models with a Small Number of Clusters</title><source>De Gruyter journals</source><creator>Cai, Yong ; Canay, Ivan A. ; Kim, Deborah ; Shaikh, Azeem M.</creator><creatorcontrib>Cai, Yong ; Canay, Ivan A. ; Kim, Deborah ; Shaikh, Azeem M.</creatorcontrib><description>This paper provides a user’s guide to the general theory of approximate randomization tests developed in Canay, Romano, and Shaikh (2017a. “Randomization Tests under an Approximate Symmetry Assumption.” Econometrica 85 (3): 1013–30) when specialized to linear regressions with clustered data. An important feature of the methodology is that it applies to settings in which the number of clusters is small – even as small as five. We provide a step-by-step algorithmic description of how to implement the test and construct confidence intervals for the parameter of interest. In doing so, we additionally present three novel results concerning the methodology: we show that the method admits an equivalent implementation based on weighted scores; we show the test and confidence intervals are invariant to whether the test statistic is studentized or not; and we prove convexity of the confidence intervals for scalar parameters. We also articulate the main requirements underlying the test, emphasizing in particular common pitfalls that researchers may encounter. Finally, we illustrate the use of the methodology with two applications that further illuminate these points: one to a linear regression with clustered data based on Meng, Qian, and Yared (2015. “The Institutional Causes of china’s Great Famine, 1959–1961.” The Review of Economic Studies 82 (4): 1568–611) and a second to a linear regression with temporally dependent data based on Munyo and Rossi (2015. “First-day Criminal Recidivism.” Journal of Public Economics 124: 81–90). The companion and packages facilitate the implementation of the methodology and the replication of the empirical exercises.</description><identifier>ISSN: 2156-6674</identifier><identifier>ISSN: 2194-6345</identifier><identifier>EISSN: 2156-6674</identifier><identifier>DOI: 10.1515/jem-2021-0030</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>C12 ; C14 ; clustered data ; Confidence intervals ; linear regression ; randomization tests ; Regression analysis ; time series</subject><ispartof>Journal of econometric methods, 2023-01, Vol.12 (1), p.85-103</ispartof><rights>2022 Walter de Gruyter GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2195-d26ef0f07d70e086b9a2525d30bdf3bd599f39e50b2fcc2bf9ed6dd0b57df7883</citedby><cites>FETCH-LOGICAL-c2195-d26ef0f07d70e086b9a2525d30bdf3bd599f39e50b2fcc2bf9ed6dd0b57df7883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/jem-2021-0030/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/jem-2021-0030/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,66497,68281</link.rule.ids></links><search><creatorcontrib>Cai, Yong</creatorcontrib><creatorcontrib>Canay, Ivan A.</creatorcontrib><creatorcontrib>Kim, Deborah</creatorcontrib><creatorcontrib>Shaikh, Azeem M.</creatorcontrib><title>On the Implementation of Approximate Randomization Tests in Linear Models with a Small Number of Clusters</title><title>Journal of econometric methods</title><description>This paper provides a user’s guide to the general theory of approximate randomization tests developed in Canay, Romano, and Shaikh (2017a. “Randomization Tests under an Approximate Symmetry Assumption.” Econometrica 85 (3): 1013–30) when specialized to linear regressions with clustered data. An important feature of the methodology is that it applies to settings in which the number of clusters is small – even as small as five. We provide a step-by-step algorithmic description of how to implement the test and construct confidence intervals for the parameter of interest. In doing so, we additionally present three novel results concerning the methodology: we show that the method admits an equivalent implementation based on weighted scores; we show the test and confidence intervals are invariant to whether the test statistic is studentized or not; and we prove convexity of the confidence intervals for scalar parameters. We also articulate the main requirements underlying the test, emphasizing in particular common pitfalls that researchers may encounter. Finally, we illustrate the use of the methodology with two applications that further illuminate these points: one to a linear regression with clustered data based on Meng, Qian, and Yared (2015. “The Institutional Causes of china’s Great Famine, 1959–1961.” The Review of Economic Studies 82 (4): 1568–611) and a second to a linear regression with temporally dependent data based on Munyo and Rossi (2015. “First-day Criminal Recidivism.” Journal of Public Economics 124: 81–90). The companion and packages facilitate the implementation of the methodology and the replication of the empirical exercises.</description><subject>C12</subject><subject>C14</subject><subject>clustered data</subject><subject>Confidence intervals</subject><subject>linear regression</subject><subject>randomization tests</subject><subject>Regression analysis</subject><subject>time series</subject><issn>2156-6674</issn><issn>2194-6345</issn><issn>2156-6674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkM1LAzEQxRdRsGiP3gOeV5Nsk028leJHoVrQel6ym4lN2S-TXWr9682yQj04lxmYH-_NvCi6IviGMMJud1DFFFMSY5zgk2hCCeMx5-ns9M98Hk293-FQbCYo5ZPIrmvUbQEtq7aECupOdbapUWPQvG1d82Ur1QF6VbVuKvs9LjfgO49sjVa2BuXQc6Oh9Ghvuy1S6K1SZYle-ioHN-gsyt534PxldGZU6WH62y-i94f7zeIpXq0fl4v5Ki4okSzWlIPBBqc6xYAFz6WijDKd4FybJNdMSpNIYDinpihobiRorjXOWapNKkRyEV2PuuH8zz6cmu2a3tXBMqMpF5IJynig4pEqXOO9A5O1LvzqDhnB2RBoFgLNhkCzIdDAo5GHoqmtP9IiSUNhORjfjcheleFhDR-uP4Th6P-vNKFEsOQHj8OHLQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Cai, Yong</creator><creator>Canay, Ivan A.</creator><creator>Kim, Deborah</creator><creator>Shaikh, Azeem M.</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20230101</creationdate><title>On the Implementation of Approximate Randomization Tests in Linear Models with a Small Number of Clusters</title><author>Cai, Yong ; Canay, Ivan A. ; Kim, Deborah ; Shaikh, Azeem M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2195-d26ef0f07d70e086b9a2525d30bdf3bd599f39e50b2fcc2bf9ed6dd0b57df7883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C12</topic><topic>C14</topic><topic>clustered data</topic><topic>Confidence intervals</topic><topic>linear regression</topic><topic>randomization tests</topic><topic>Regression analysis</topic><topic>time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Yong</creatorcontrib><creatorcontrib>Canay, Ivan A.</creatorcontrib><creatorcontrib>Kim, Deborah</creatorcontrib><creatorcontrib>Shaikh, Azeem M.</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global (ProquesT)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of econometric methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Yong</au><au>Canay, Ivan A.</au><au>Kim, Deborah</au><au>Shaikh, Azeem M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Implementation of Approximate Randomization Tests in Linear Models with a Small Number of Clusters</atitle><jtitle>Journal of econometric methods</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>12</volume><issue>1</issue><spage>85</spage><epage>103</epage><pages>85-103</pages><issn>2156-6674</issn><issn>2194-6345</issn><eissn>2156-6674</eissn><abstract>This paper provides a user’s guide to the general theory of approximate randomization tests developed in Canay, Romano, and Shaikh (2017a. “Randomization Tests under an Approximate Symmetry Assumption.” Econometrica 85 (3): 1013–30) when specialized to linear regressions with clustered data. An important feature of the methodology is that it applies to settings in which the number of clusters is small – even as small as five. We provide a step-by-step algorithmic description of how to implement the test and construct confidence intervals for the parameter of interest. In doing so, we additionally present three novel results concerning the methodology: we show that the method admits an equivalent implementation based on weighted scores; we show the test and confidence intervals are invariant to whether the test statistic is studentized or not; and we prove convexity of the confidence intervals for scalar parameters. We also articulate the main requirements underlying the test, emphasizing in particular common pitfalls that researchers may encounter. Finally, we illustrate the use of the methodology with two applications that further illuminate these points: one to a linear regression with clustered data based on Meng, Qian, and Yared (2015. “The Institutional Causes of china’s Great Famine, 1959–1961.” The Review of Economic Studies 82 (4): 1568–611) and a second to a linear regression with temporally dependent data based on Munyo and Rossi (2015. “First-day Criminal Recidivism.” Journal of Public Economics 124: 81–90). The companion and packages facilitate the implementation of the methodology and the replication of the empirical exercises.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/jem-2021-0030</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2156-6674
ispartof Journal of econometric methods, 2023-01, Vol.12 (1), p.85-103
issn 2156-6674
2194-6345
2156-6674
language eng
recordid cdi_proquest_journals_2768958256
source De Gruyter journals
subjects C12
C14
clustered data
Confidence intervals
linear regression
randomization tests
Regression analysis
time series
title On the Implementation of Approximate Randomization Tests in Linear Models with a Small Number of Clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Implementation%20of%20Approximate%20Randomization%20Tests%20in%20Linear%20Models%20with%20a%20Small%20Number%20of%20Clusters&rft.jtitle=Journal%20of%20econometric%20methods&rft.au=Cai,%20Yong&rft.date=2023-01-01&rft.volume=12&rft.issue=1&rft.spage=85&rft.epage=103&rft.pages=85-103&rft.issn=2156-6674&rft.eissn=2156-6674&rft_id=info:doi/10.1515/jem-2021-0030&rft_dat=%3Cproquest_cross%3E2768958256%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2768958256&rft_id=info:pmid/&rfr_iscdi=true