Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set
Gespeichert in:
Veröffentlicht in: | Nature machine intelligence 2023-01, Vol.5 (1), p.29-31 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | 1 |
container_start_page | 29 |
container_title | Nature machine intelligence |
container_volume | 5 |
creator | Angelini, Maria Chiara Ricci-Tersenghi, Federico |
description | |
doi_str_mv | 10.1038/s42256-022-00589-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2768952316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2768952316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7ad7490229252888ca05848219d3c82cbffb8dae4bede19fac5ad3ef9318f5b93</originalsourceid><addsrcrecordid>eNp9kMtO5DAQRSME0iDgB2ZliXXAj6TbXiLES-oRm2FtOXYlbUjsYLuBns-YL6agR4LVbFxl-dxy3VtVPxk9Y1TI89xw3i5qynlNaStVvd2rDnmL11YKtf-t_1Gd5PxIKeWsaVraHFZ_f0UHKZAhmXlNAmySGbGU15ieMnGRYJOBlLUJxI4mZ28RGBKA2xIzDjH5sp4y8YHkOL74MBAbp84HU_AJ0TgXP_k_pvgYyJxiNwLio38CMpk3P20m1DqYAY9QSIZyXB30Zsxw8q8eVQ_XV78vb-vV_c3d5cWqtoKpUi-NWzYKTSu0J6W0Br03kjPlhJXcdn3fSWeg6cABU72xrXECeiWY7NtOiaPqdDcXt3reQC76MW5SwC81Xy6karlgC6T4jrIp5pyg13Pyk0lbzaj-iF_v4te4if6MX29RJHaijHAYIH2N_o_qHUd0jXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2768952316</pqid></control><display><type>article</type><title>Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set</title><source>SpringerLink Journals - AutoHoldings</source><creator>Angelini, Maria Chiara ; Ricci-Tersenghi, Federico</creator><creatorcontrib>Angelini, Maria Chiara ; Ricci-Tersenghi, Federico</creatorcontrib><identifier>ISSN: 2522-5839</identifier><identifier>EISSN: 2522-5839</identifier><identifier>DOI: 10.1038/s42256-022-00589-y</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/117 ; 639/766/530/2801 ; Algorithms ; Approximation ; Benchmarks ; Combinatorial analysis ; Engineering ; Graph neural networks ; Greedy algorithms ; Matters Arising ; Neural networks ; Optimization ; Physics</subject><ispartof>Nature machine intelligence, 2023-01, Vol.5 (1), p.29-31</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7ad7490229252888ca05848219d3c82cbffb8dae4bede19fac5ad3ef9318f5b93</citedby><cites>FETCH-LOGICAL-c319t-7ad7490229252888ca05848219d3c82cbffb8dae4bede19fac5ad3ef9318f5b93</cites><orcidid>0000-0002-6277-359X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42256-022-00589-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s42256-022-00589-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Angelini, Maria Chiara</creatorcontrib><creatorcontrib>Ricci-Tersenghi, Federico</creatorcontrib><title>Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set</title><title>Nature machine intelligence</title><addtitle>Nat Mach Intell</addtitle><subject>639/705/117</subject><subject>639/766/530/2801</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Benchmarks</subject><subject>Combinatorial analysis</subject><subject>Engineering</subject><subject>Graph neural networks</subject><subject>Greedy algorithms</subject><subject>Matters Arising</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Physics</subject><issn>2522-5839</issn><issn>2522-5839</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtO5DAQRSME0iDgB2ZliXXAj6TbXiLES-oRm2FtOXYlbUjsYLuBns-YL6agR4LVbFxl-dxy3VtVPxk9Y1TI89xw3i5qynlNaStVvd2rDnmL11YKtf-t_1Gd5PxIKeWsaVraHFZ_f0UHKZAhmXlNAmySGbGU15ieMnGRYJOBlLUJxI4mZ28RGBKA2xIzDjH5sp4y8YHkOL74MBAbp84HU_AJ0TgXP_k_pvgYyJxiNwLio38CMpk3P20m1DqYAY9QSIZyXB30Zsxw8q8eVQ_XV78vb-vV_c3d5cWqtoKpUi-NWzYKTSu0J6W0Br03kjPlhJXcdn3fSWeg6cABU72xrXECeiWY7NtOiaPqdDcXt3reQC76MW5SwC81Xy6karlgC6T4jrIp5pyg13Pyk0lbzaj-iF_v4te4if6MX29RJHaijHAYIH2N_o_qHUd0jXk</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Angelini, Maria Chiara</creator><creator>Ricci-Tersenghi, Federico</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6277-359X</orcidid></search><sort><creationdate>20230101</creationdate><title>Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set</title><author>Angelini, Maria Chiara ; Ricci-Tersenghi, Federico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7ad7490229252888ca05848219d3c82cbffb8dae4bede19fac5ad3ef9318f5b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/705/117</topic><topic>639/766/530/2801</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Benchmarks</topic><topic>Combinatorial analysis</topic><topic>Engineering</topic><topic>Graph neural networks</topic><topic>Greedy algorithms</topic><topic>Matters Arising</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angelini, Maria Chiara</creatorcontrib><creatorcontrib>Ricci-Tersenghi, Federico</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Nature machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angelini, Maria Chiara</au><au>Ricci-Tersenghi, Federico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set</atitle><jtitle>Nature machine intelligence</jtitle><stitle>Nat Mach Intell</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>5</volume><issue>1</issue><spage>29</spage><epage>31</epage><pages>29-31</pages><issn>2522-5839</issn><eissn>2522-5839</eissn><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42256-022-00589-y</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-6277-359X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2522-5839 |
ispartof | Nature machine intelligence, 2023-01, Vol.5 (1), p.29-31 |
issn | 2522-5839 2522-5839 |
language | eng |
recordid | cdi_proquest_journals_2768952316 |
source | SpringerLink Journals - AutoHoldings |
subjects | 639/705/117 639/766/530/2801 Algorithms Approximation Benchmarks Combinatorial analysis Engineering Graph neural networks Greedy algorithms Matters Arising Neural networks Optimization Physics |
title | Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A41%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modern%20graph%20neural%20networks%20do%20worse%20than%20classical%20greedy%20algorithms%20in%20solving%20combinatorial%20optimization%20problems%20like%20maximum%20independent%20set&rft.jtitle=Nature%20machine%20intelligence&rft.au=Angelini,%20Maria%20Chiara&rft.date=2023-01-01&rft.volume=5&rft.issue=1&rft.spage=29&rft.epage=31&rft.pages=29-31&rft.issn=2522-5839&rft.eissn=2522-5839&rft_id=info:doi/10.1038/s42256-022-00589-y&rft_dat=%3Cproquest_cross%3E2768952316%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2768952316&rft_id=info:pmid/&rfr_iscdi=true |