Improved imputation of rule sets in class association rule modeling: application to transportation mode choice

Predicting transportation mode choice is a critical component of forecasting travel demand. Recently, machine learning methods have become increasingly more popular in predicting transportation mode choice. Class association rules (CARs) have been applied to transportation mode choice, but the appli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation (Dordrecht) 2023-02, Vol.50 (1), p.63-106
Hauptverfasser: Zhang, Jiajia, Feng, Tao, Timmermans, Harry, Lin, Zhengkui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106
container_issue 1
container_start_page 63
container_title Transportation (Dordrecht)
container_volume 50
creator Zhang, Jiajia
Feng, Tao
Timmermans, Harry
Lin, Zhengkui
description Predicting transportation mode choice is a critical component of forecasting travel demand. Recently, machine learning methods have become increasingly more popular in predicting transportation mode choice. Class association rules (CARs) have been applied to transportation mode choice, but the application of the imputed rules for prediction remains a long-standing challenge. Based on CARs, this paper proposes a new rule merging approach, called CARM, to improve predictive accuracy. In the suggested approach, first, CARs are imputed from the frequent pattern tree ( FP-tree ) based on the frequent pattern growth (FP-growth) algorithm. Next, the rules are pruned based on the concept of pessimistic error rate. Finally, the rules are merged to form new rules without increasing predictive error. Using the 2015 Dutch National Travel Survey, the performance of suggested model is compared with the performance of CARIG that uses the information gain statistic to generate new rules, class-based association rules (CBA), decision trees (DT) and the multinomial logit (MNL) model. In addition, the proposed model is assessed using a ten-fold cross validation test. The results show that the accuracy of the proposed model is 91.1%, which outperforms CARIG, CBA, DT and the MNL model.
doi_str_mv 10.1007/s11116-021-10238-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2768915567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2768915567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-6481ccd4156029478b4cb13e3e13390b4f3b7a15554506b3ab23152563822a433</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TytR_epPhRKHjRc8im2Zqyu1mTrOC_N3YL3hwY5jDP-w7zInRN4ZYClHeR5ioIMEooMF6R-gQtqCwZqQWXp2gBIGoiRFWdo4sY9wAgqaQLNKz7Mfgvu8WuH6ekk_MD9i0OU2dxtCliN2DT6Rhxbm_cTBzWvd_azg27e6zHsXNmXiWPU9BDHH042v1y2Hx4Z-wlOmt1F-3VcS7R-9Pj2-qFbF6f16uHDTEceCKFqKgxW0FlAawWZdUI01BuuaWc19CIljelplJKIaFouG4Yp5LJgleMacH5Et3Mvvm5z8nGpPZ-CkM-qVhZVHWWFmWm2EyZ4GMMtlVjcL0O34qC-s1VzbmqnKs65KrqLOKzKGZ42NnwZ_2P6geBbHtT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2768915567</pqid></control><display><type>article</type><title>Improved imputation of rule sets in class association rule modeling: application to transportation mode choice</title><source>SpringerNature Journals</source><creator>Zhang, Jiajia ; Feng, Tao ; Timmermans, Harry ; Lin, Zhengkui</creator><creatorcontrib>Zhang, Jiajia ; Feng, Tao ; Timmermans, Harry ; Lin, Zhengkui</creatorcontrib><description>Predicting transportation mode choice is a critical component of forecasting travel demand. Recently, machine learning methods have become increasingly more popular in predicting transportation mode choice. Class association rules (CARs) have been applied to transportation mode choice, but the application of the imputed rules for prediction remains a long-standing challenge. Based on CARs, this paper proposes a new rule merging approach, called CARM, to improve predictive accuracy. In the suggested approach, first, CARs are imputed from the frequent pattern tree ( FP-tree ) based on the frequent pattern growth (FP-growth) algorithm. Next, the rules are pruned based on the concept of pessimistic error rate. Finally, the rules are merged to form new rules without increasing predictive error. Using the 2015 Dutch National Travel Survey, the performance of suggested model is compared with the performance of CARIG that uses the information gain statistic to generate new rules, class-based association rules (CBA), decision trees (DT) and the multinomial logit (MNL) model. In addition, the proposed model is assessed using a ten-fold cross validation test. The results show that the accuracy of the proposed model is 91.1%, which outperforms CARIG, CBA, DT and the MNL model.</description><identifier>ISSN: 0049-4488</identifier><identifier>EISSN: 1572-9435</identifier><identifier>DOI: 10.1007/s11116-021-10238-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Associations ; Behavior ; Critical components ; Decision making ; Decision theory ; Decision trees ; Economic Geography ; Economics ; Economics and Finance ; Engineering Economics ; Innovation/Technology Management ; Literature reviews ; Logistics ; Machine learning ; Marketing ; Modal choice ; Neural networks ; Organization ; Regional/Spatial Science ; Rule modelling ; Support vector machines ; Transportation ; Transportation applications ; Travel ; Travel demand ; Trip surveys</subject><ispartof>Transportation (Dordrecht), 2023-02, Vol.50 (1), p.63-106</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-6481ccd4156029478b4cb13e3e13390b4f3b7a15554506b3ab23152563822a433</cites><orcidid>0000-0002-5759-3164 ; 0000-0003-0990-7445 ; 0000-0002-8737-4632 ; 0000-0002-9629-3316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11116-021-10238-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11116-021-10238-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, Jiajia</creatorcontrib><creatorcontrib>Feng, Tao</creatorcontrib><creatorcontrib>Timmermans, Harry</creatorcontrib><creatorcontrib>Lin, Zhengkui</creatorcontrib><title>Improved imputation of rule sets in class association rule modeling: application to transportation mode choice</title><title>Transportation (Dordrecht)</title><addtitle>Transportation</addtitle><description>Predicting transportation mode choice is a critical component of forecasting travel demand. Recently, machine learning methods have become increasingly more popular in predicting transportation mode choice. Class association rules (CARs) have been applied to transportation mode choice, but the application of the imputed rules for prediction remains a long-standing challenge. Based on CARs, this paper proposes a new rule merging approach, called CARM, to improve predictive accuracy. In the suggested approach, first, CARs are imputed from the frequent pattern tree ( FP-tree ) based on the frequent pattern growth (FP-growth) algorithm. Next, the rules are pruned based on the concept of pessimistic error rate. Finally, the rules are merged to form new rules without increasing predictive error. Using the 2015 Dutch National Travel Survey, the performance of suggested model is compared with the performance of CARIG that uses the information gain statistic to generate new rules, class-based association rules (CBA), decision trees (DT) and the multinomial logit (MNL) model. In addition, the proposed model is assessed using a ten-fold cross validation test. The results show that the accuracy of the proposed model is 91.1%, which outperforms CARIG, CBA, DT and the MNL model.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Associations</subject><subject>Behavior</subject><subject>Critical components</subject><subject>Decision making</subject><subject>Decision theory</subject><subject>Decision trees</subject><subject>Economic Geography</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Engineering Economics</subject><subject>Innovation/Technology Management</subject><subject>Literature reviews</subject><subject>Logistics</subject><subject>Machine learning</subject><subject>Marketing</subject><subject>Modal choice</subject><subject>Neural networks</subject><subject>Organization</subject><subject>Regional/Spatial Science</subject><subject>Rule modelling</subject><subject>Support vector machines</subject><subject>Transportation</subject><subject>Transportation applications</subject><subject>Travel</subject><subject>Travel demand</subject><subject>Trip surveys</subject><issn>0049-4488</issn><issn>1572-9435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TytR_epPhRKHjRc8im2Zqyu1mTrOC_N3YL3hwY5jDP-w7zInRN4ZYClHeR5ioIMEooMF6R-gQtqCwZqQWXp2gBIGoiRFWdo4sY9wAgqaQLNKz7Mfgvu8WuH6ekk_MD9i0OU2dxtCliN2DT6Rhxbm_cTBzWvd_azg27e6zHsXNmXiWPU9BDHH042v1y2Hx4Z-wlOmt1F-3VcS7R-9Pj2-qFbF6f16uHDTEceCKFqKgxW0FlAawWZdUI01BuuaWc19CIljelplJKIaFouG4Yp5LJgleMacH5Et3Mvvm5z8nGpPZ-CkM-qVhZVHWWFmWm2EyZ4GMMtlVjcL0O34qC-s1VzbmqnKs65KrqLOKzKGZ42NnwZ_2P6geBbHtT</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zhang, Jiajia</creator><creator>Feng, Tao</creator><creator>Timmermans, Harry</creator><creator>Lin, Zhengkui</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8BJ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5759-3164</orcidid><orcidid>https://orcid.org/0000-0003-0990-7445</orcidid><orcidid>https://orcid.org/0000-0002-8737-4632</orcidid><orcidid>https://orcid.org/0000-0002-9629-3316</orcidid></search><sort><creationdate>20230201</creationdate><title>Improved imputation of rule sets in class association rule modeling: application to transportation mode choice</title><author>Zhang, Jiajia ; Feng, Tao ; Timmermans, Harry ; Lin, Zhengkui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-6481ccd4156029478b4cb13e3e13390b4f3b7a15554506b3ab23152563822a433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Associations</topic><topic>Behavior</topic><topic>Critical components</topic><topic>Decision making</topic><topic>Decision theory</topic><topic>Decision trees</topic><topic>Economic Geography</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Engineering Economics</topic><topic>Innovation/Technology Management</topic><topic>Literature reviews</topic><topic>Logistics</topic><topic>Machine learning</topic><topic>Marketing</topic><topic>Modal choice</topic><topic>Neural networks</topic><topic>Organization</topic><topic>Regional/Spatial Science</topic><topic>Rule modelling</topic><topic>Support vector machines</topic><topic>Transportation</topic><topic>Transportation applications</topic><topic>Travel</topic><topic>Travel demand</topic><topic>Trip surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiajia</creatorcontrib><creatorcontrib>Feng, Tao</creatorcontrib><creatorcontrib>Timmermans, Harry</creatorcontrib><creatorcontrib>Lin, Zhengkui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Transportation (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jiajia</au><au>Feng, Tao</au><au>Timmermans, Harry</au><au>Lin, Zhengkui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved imputation of rule sets in class association rule modeling: application to transportation mode choice</atitle><jtitle>Transportation (Dordrecht)</jtitle><stitle>Transportation</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>50</volume><issue>1</issue><spage>63</spage><epage>106</epage><pages>63-106</pages><issn>0049-4488</issn><eissn>1572-9435</eissn><abstract>Predicting transportation mode choice is a critical component of forecasting travel demand. Recently, machine learning methods have become increasingly more popular in predicting transportation mode choice. Class association rules (CARs) have been applied to transportation mode choice, but the application of the imputed rules for prediction remains a long-standing challenge. Based on CARs, this paper proposes a new rule merging approach, called CARM, to improve predictive accuracy. In the suggested approach, first, CARs are imputed from the frequent pattern tree ( FP-tree ) based on the frequent pattern growth (FP-growth) algorithm. Next, the rules are pruned based on the concept of pessimistic error rate. Finally, the rules are merged to form new rules without increasing predictive error. Using the 2015 Dutch National Travel Survey, the performance of suggested model is compared with the performance of CARIG that uses the information gain statistic to generate new rules, class-based association rules (CBA), decision trees (DT) and the multinomial logit (MNL) model. In addition, the proposed model is assessed using a ten-fold cross validation test. The results show that the accuracy of the proposed model is 91.1%, which outperforms CARIG, CBA, DT and the MNL model.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11116-021-10238-9</doi><tpages>44</tpages><orcidid>https://orcid.org/0000-0002-5759-3164</orcidid><orcidid>https://orcid.org/0000-0003-0990-7445</orcidid><orcidid>https://orcid.org/0000-0002-8737-4632</orcidid><orcidid>https://orcid.org/0000-0002-9629-3316</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0049-4488
ispartof Transportation (Dordrecht), 2023-02, Vol.50 (1), p.63-106
issn 0049-4488
1572-9435
language eng
recordid cdi_proquest_journals_2768915567
source SpringerNature Journals
subjects Accuracy
Algorithms
Associations
Behavior
Critical components
Decision making
Decision theory
Decision trees
Economic Geography
Economics
Economics and Finance
Engineering Economics
Innovation/Technology Management
Literature reviews
Logistics
Machine learning
Marketing
Modal choice
Neural networks
Organization
Regional/Spatial Science
Rule modelling
Support vector machines
Transportation
Transportation applications
Travel
Travel demand
Trip surveys
title Improved imputation of rule sets in class association rule modeling: application to transportation mode choice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20imputation%20of%20rule%20sets%20in%20class%20association%20rule%20modeling:%20application%20to%20transportation%20mode%20choice&rft.jtitle=Transportation%20(Dordrecht)&rft.au=Zhang,%20Jiajia&rft.date=2023-02-01&rft.volume=50&rft.issue=1&rft.spage=63&rft.epage=106&rft.pages=63-106&rft.issn=0049-4488&rft.eissn=1572-9435&rft_id=info:doi/10.1007/s11116-021-10238-9&rft_dat=%3Cproquest_cross%3E2768915567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2768915567&rft_id=info:pmid/&rfr_iscdi=true