Giant gravitons, Harish-Chandra integrals, and BPS states in symplectic and orthogonal N = 4 SYM
A bstract We find generating functions for half BPS correlators in N = 4 SYM theories with gauge groups Sp(2 N ), SO(2 N + 1), and SO(2 N ) by computing the norms of a class of BPS coherent states. These coherent states are built from operators involving Harish-Chandra integrals. Such operators have...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2022-10, Vol.2022 (10), p.78 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 78 |
container_title | The journal of high energy physics |
container_volume | 2022 |
creator | Holguin, Adolfo Wang, Shannon |
description | A
bstract
We find generating functions for half BPS correlators in
N
= 4 SYM theories with gauge groups Sp(2
N
), SO(2
N
+ 1), and SO(2
N
) by computing the norms of a class of BPS coherent states. These coherent states are built from operators involving Harish-Chandra integrals. Such operators have an interpretation as localized giant gravitons in the bulk of anti-de-Sitter space. This extends the analysis of [
1
] to Sp(2
N
), SO(2
N
+ 1), and SO(2
N
) gauge theories. We show that we may use ordinary Schur functions as a basis for the sector of states with no cross-caps in these theories. This is consistent with the construction of these theories as orientifold projections of an SU(2
N
) theory. We make note of some relations between the symmetric functions that appear in the expansion of these coherent states and symplectic Schur functions. We also comment on some connections to Schubert calculus and Gromov-Witten invariants, which suggest that the Harish-Chandra integral may be extended to such problems. |
doi_str_mv | 10.1007/JHEP10(2022)078 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2768581654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2768581654</sourcerecordid><originalsourceid>FETCH-LOGICAL-p224t-d86dc68a463cd3936e96cf2d30dec74c86f406a1f85067e9b263b3de8d31de003</originalsourceid><addsrcrecordid>eNpFkM9LwzAUx4MgOKdnrwEvClZffjRNDx50zFWZOpgePNUsSdeO2dYkE_zvzZzg6cH7fL-PxwehEwKXBCC7eijGMwJnFCg9h0zuoQEBmieSZ_kBOvR-BUBSksMAvU8a1Qa8dOqrCV3rL3ChXOPrZFSr1jiFmzbYSNeRxAW-nc2xDypYHwn23x_92urQ6F_YuVB3y65Va_yErzHH87fHI7RfxbY9_ptD9Ho3fhkVyfR5cj-6mSY9pTwkRgqjhVRcMG1YzoTNha6oYWCszriWouIgFKlkCiKz-YIKtmDGSsOIsQBsiE53d3vXfW6sD-Wq27j4ii9pJmQqiUh5TMEu5XvXtEvr_lMEyq27cueu3Lorozv2A4YnYpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2768581654</pqid></control><display><type>article</type><title>Giant gravitons, Harish-Chandra integrals, and BPS states in symplectic and orthogonal N = 4 SYM</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Alma/SFX Local Collection</source><creator>Holguin, Adolfo ; Wang, Shannon</creator><creatorcontrib>Holguin, Adolfo ; Wang, Shannon</creatorcontrib><description>A
bstract
We find generating functions for half BPS correlators in
N
= 4 SYM theories with gauge groups Sp(2
N
), SO(2
N
+ 1), and SO(2
N
) by computing the norms of a class of BPS coherent states. These coherent states are built from operators involving Harish-Chandra integrals. Such operators have an interpretation as localized giant gravitons in the bulk of anti-de-Sitter space. This extends the analysis of [
1
] to Sp(2
N
), SO(2
N
+ 1), and SO(2
N
) gauge theories. We show that we may use ordinary Schur functions as a basis for the sector of states with no cross-caps in these theories. This is consistent with the construction of these theories as orientifold projections of an SU(2
N
) theory. We make note of some relations between the symmetric functions that appear in the expansion of these coherent states and symplectic Schur functions. We also comment on some connections to Schubert calculus and Gromov-Witten invariants, which suggest that the Harish-Chandra integral may be extended to such problems.</description><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP10(2022)078</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calculus ; Classical and Quantum Gravitation ; Coherence ; Correlators ; Elementary Particles ; Gauge theory ; Gravitons ; High energy physics ; Integrals ; Lie groups ; Norms ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2022-10, Vol.2022 (10), p.78</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0585-6556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP10(2022)078$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP10(2022)078$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,27911,27912,41107,42176,51563</link.rule.ids></links><search><creatorcontrib>Holguin, Adolfo</creatorcontrib><creatorcontrib>Wang, Shannon</creatorcontrib><title>Giant gravitons, Harish-Chandra integrals, and BPS states in symplectic and orthogonal N = 4 SYM</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
We find generating functions for half BPS correlators in
N
= 4 SYM theories with gauge groups Sp(2
N
), SO(2
N
+ 1), and SO(2
N
) by computing the norms of a class of BPS coherent states. These coherent states are built from operators involving Harish-Chandra integrals. Such operators have an interpretation as localized giant gravitons in the bulk of anti-de-Sitter space. This extends the analysis of [
1
] to Sp(2
N
), SO(2
N
+ 1), and SO(2
N
) gauge theories. We show that we may use ordinary Schur functions as a basis for the sector of states with no cross-caps in these theories. This is consistent with the construction of these theories as orientifold projections of an SU(2
N
) theory. We make note of some relations between the symmetric functions that appear in the expansion of these coherent states and symplectic Schur functions. We also comment on some connections to Schubert calculus and Gromov-Witten invariants, which suggest that the Harish-Chandra integral may be extended to such problems.</description><subject>Calculus</subject><subject>Classical and Quantum Gravitation</subject><subject>Coherence</subject><subject>Correlators</subject><subject>Elementary Particles</subject><subject>Gauge theory</subject><subject>Gravitons</subject><subject>High energy physics</subject><subject>Integrals</subject><subject>Lie groups</subject><subject>Norms</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpFkM9LwzAUx4MgOKdnrwEvClZffjRNDx50zFWZOpgePNUsSdeO2dYkE_zvzZzg6cH7fL-PxwehEwKXBCC7eijGMwJnFCg9h0zuoQEBmieSZ_kBOvR-BUBSksMAvU8a1Qa8dOqrCV3rL3ChXOPrZFSr1jiFmzbYSNeRxAW-nc2xDypYHwn23x_92urQ6F_YuVB3y65Va_yErzHH87fHI7RfxbY9_ptD9Ho3fhkVyfR5cj-6mSY9pTwkRgqjhVRcMG1YzoTNha6oYWCszriWouIgFKlkCiKz-YIKtmDGSsOIsQBsiE53d3vXfW6sD-Wq27j4ii9pJmQqiUh5TMEu5XvXtEvr_lMEyq27cueu3Lorozv2A4YnYpw</recordid><startdate>20221012</startdate><enddate>20221012</enddate><creator>Holguin, Adolfo</creator><creator>Wang, Shannon</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0585-6556</orcidid></search><sort><creationdate>20221012</creationdate><title>Giant gravitons, Harish-Chandra integrals, and BPS states in symplectic and orthogonal N = 4 SYM</title><author>Holguin, Adolfo ; Wang, Shannon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p224t-d86dc68a463cd3936e96cf2d30dec74c86f406a1f85067e9b263b3de8d31de003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Calculus</topic><topic>Classical and Quantum Gravitation</topic><topic>Coherence</topic><topic>Correlators</topic><topic>Elementary Particles</topic><topic>Gauge theory</topic><topic>Gravitons</topic><topic>High energy physics</topic><topic>Integrals</topic><topic>Lie groups</topic><topic>Norms</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holguin, Adolfo</creatorcontrib><creatorcontrib>Wang, Shannon</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holguin, Adolfo</au><au>Wang, Shannon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant gravitons, Harish-Chandra integrals, and BPS states in symplectic and orthogonal N = 4 SYM</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2022-10-12</date><risdate>2022</risdate><volume>2022</volume><issue>10</issue><spage>78</spage><pages>78-</pages><eissn>1029-8479</eissn><abstract>A
bstract
We find generating functions for half BPS correlators in
N
= 4 SYM theories with gauge groups Sp(2
N
), SO(2
N
+ 1), and SO(2
N
) by computing the norms of a class of BPS coherent states. These coherent states are built from operators involving Harish-Chandra integrals. Such operators have an interpretation as localized giant gravitons in the bulk of anti-de-Sitter space. This extends the analysis of [
1
] to Sp(2
N
), SO(2
N
+ 1), and SO(2
N
) gauge theories. We show that we may use ordinary Schur functions as a basis for the sector of states with no cross-caps in these theories. This is consistent with the construction of these theories as orientifold projections of an SU(2
N
) theory. We make note of some relations between the symmetric functions that appear in the expansion of these coherent states and symplectic Schur functions. We also comment on some connections to Schubert calculus and Gromov-Witten invariants, which suggest that the Harish-Chandra integral may be extended to such problems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP10(2022)078</doi><orcidid>https://orcid.org/0000-0003-0585-6556</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2022-10, Vol.2022 (10), p.78 |
issn | 1029-8479 |
language | eng |
recordid | cdi_proquest_journals_2768581654 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Alma/SFX Local Collection |
subjects | Calculus Classical and Quantum Gravitation Coherence Correlators Elementary Particles Gauge theory Gravitons High energy physics Integrals Lie groups Norms Operators (mathematics) Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory |
title | Giant gravitons, Harish-Chandra integrals, and BPS states in symplectic and orthogonal N = 4 SYM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20gravitons,%20Harish-Chandra%20integrals,%20and%20BPS%20states%20in%20symplectic%20and%20orthogonal%20N%20=%204%20SYM&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Holguin,%20Adolfo&rft.date=2022-10-12&rft.volume=2022&rft.issue=10&rft.spage=78&rft.pages=78-&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP10(2022)078&rft_dat=%3Cproquest_sprin%3E2768581654%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2768581654&rft_id=info:pmid/&rfr_iscdi=true |