Nonlinear inflation forecasting with recurrent neural networks

Motivated by the recent literature that finds that artificial neural networks (NN) can efficiently predict economic time‐series in general and inflation in particular, we investigate if the forecasting performance can be improved even further by using a particular kind of NN—a recurrent neural netwo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forecasting 2023-03, Vol.42 (2), p.240-259
Hauptverfasser: Almosova, Anna, Andresen, Niek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by the recent literature that finds that artificial neural networks (NN) can efficiently predict economic time‐series in general and inflation in particular, we investigate if the forecasting performance can be improved even further by using a particular kind of NN—a recurrent neural network. We use a long short‐term memory recurrent neural network (LSTM) that was proven to be highly efficient for sequential data and computed univariate forecasts of monthly US CPI inflation. We show that even though LSTM slightly outperforms autoregressive model (AR), NN, and Markov‐switching models, its performance is on par with the seasonal autoregressive model SARIMA. Additionally, we conduct a sensitivity analysis with respect to hyperparameters and provide a qualitative interpretation of what the networks learn by applying a novel layer‐wise relevance propagation technique.
ISSN:1099-131X
0277-6693
1099-131X
DOI:10.1002/for.2901