Regularization of the Inverse Problem for Time Fractional Pseudo-parabolic Equation with Non-local in Time Conditions

This paper is devoted to identifying an unknown source for a time-fractional diffusion equation in a general bounded domain. First, we prove the problem is non-well posed and the stability of the source function. Second, by using the Modified Fractional Landweber method, we present regularization so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2022-12, Vol.38 (12), p.2199-2219
Hauptverfasser: Phuong, Nguyen Duc, Long, Le Dinh, Nguyen, Anh Tuan, Baleanu, Dumitru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2219
container_issue 12
container_start_page 2199
container_title Acta mathematica Sinica. English series
container_volume 38
creator Phuong, Nguyen Duc
Long, Le Dinh
Nguyen, Anh Tuan
Baleanu, Dumitru
description This paper is devoted to identifying an unknown source for a time-fractional diffusion equation in a general bounded domain. First, we prove the problem is non-well posed and the stability of the source function. Second, by using the Modified Fractional Landweber method, we present regularization solutions and show the convergence rate between regularization solutions and sought solution are given under a priori and a posteriori choice rules of the regularization parameter, respectively. Finally, we present an illustrative numerical example to test the results of our theory.
doi_str_mv 10.1007/s10114-022-1234-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2767569127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767569127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-19b3011854cb7b9f58c4bab4025f7b7ba5caedfe398e4e0289f6dc2a0b1b3abd3</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKc_wFvAczRJm6Y9yth0MHTIPIckTbaMrtmSVnG_3owOPHnKR3iel-97Abgn-JFgzJ8iwYTkCFOKCM1ydLwAI5JnFeIF4ZfnuWSkuAY3MW4xZqzCxQj0H2bdNzK4o-ycb6G3sNsYOG-_TIgGLoNXjdlB6wNcuZ2BsyD1CZQNXEbT1x7tZZDKN07D6aEfQr5dt4FvvkWN1wl07eBOfFu7ExBvwZWVTTR353cMPmfT1eQVLd5f5pPnBdIZKTpEKpWls0qWa8VVZVmpcyVVjimzPP1IpqWprcmq0uQG07KyRa2pxIqoTKo6G4OHIXcf_KE3sRNb34e0fBSUF5wVFaE8UWSgdPAxBmPFPridDD-CYHFqVwztitSuOLUrjsmhgxMT265N-Ev-X_oFJdl_mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767569127</pqid></control><display><type>article</type><title>Regularization of the Inverse Problem for Time Fractional Pseudo-parabolic Equation with Non-local in Time Conditions</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Phuong, Nguyen Duc ; Long, Le Dinh ; Nguyen, Anh Tuan ; Baleanu, Dumitru</creator><creatorcontrib>Phuong, Nguyen Duc ; Long, Le Dinh ; Nguyen, Anh Tuan ; Baleanu, Dumitru</creatorcontrib><description>This paper is devoted to identifying an unknown source for a time-fractional diffusion equation in a general bounded domain. First, we prove the problem is non-well posed and the stability of the source function. Second, by using the Modified Fractional Landweber method, we present regularization solutions and show the convergence rate between regularization solutions and sought solution are given under a priori and a posteriori choice rules of the regularization parameter, respectively. Finally, we present an illustrative numerical example to test the results of our theory.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-022-1234-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Differential equations ; Ill posed problems ; Inverse problems ; Mathematics ; Mathematics and Statistics ; Regularization</subject><ispartof>Acta mathematica Sinica. English series, 2022-12, Vol.38 (12), p.2199-2219</ispartof><rights>Springer-Verlag GmbH Germany &amp; The Editorial Office of AMS 2022</rights><rights>Springer-Verlag GmbH Germany &amp; The Editorial Office of AMS 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-19b3011854cb7b9f58c4bab4025f7b7ba5caedfe398e4e0289f6dc2a0b1b3abd3</citedby><cites>FETCH-LOGICAL-c316t-19b3011854cb7b9f58c4bab4025f7b7ba5caedfe398e4e0289f6dc2a0b1b3abd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-022-1234-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-022-1234-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Phuong, Nguyen Duc</creatorcontrib><creatorcontrib>Long, Le Dinh</creatorcontrib><creatorcontrib>Nguyen, Anh Tuan</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><title>Regularization of the Inverse Problem for Time Fractional Pseudo-parabolic Equation with Non-local in Time Conditions</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><description>This paper is devoted to identifying an unknown source for a time-fractional diffusion equation in a general bounded domain. First, we prove the problem is non-well posed and the stability of the source function. Second, by using the Modified Fractional Landweber method, we present regularization solutions and show the convergence rate between regularization solutions and sought solution are given under a priori and a posteriori choice rules of the regularization parameter, respectively. Finally, we present an illustrative numerical example to test the results of our theory.</description><subject>Differential equations</subject><subject>Ill posed problems</subject><subject>Inverse problems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Regularization</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoOKc_wFvAczRJm6Y9yth0MHTIPIckTbaMrtmSVnG_3owOPHnKR3iel-97Abgn-JFgzJ8iwYTkCFOKCM1ydLwAI5JnFeIF4ZfnuWSkuAY3MW4xZqzCxQj0H2bdNzK4o-ycb6G3sNsYOG-_TIgGLoNXjdlB6wNcuZ2BsyD1CZQNXEbT1x7tZZDKN07D6aEfQr5dt4FvvkWN1wl07eBOfFu7ExBvwZWVTTR353cMPmfT1eQVLd5f5pPnBdIZKTpEKpWls0qWa8VVZVmpcyVVjimzPP1IpqWprcmq0uQG07KyRa2pxIqoTKo6G4OHIXcf_KE3sRNb34e0fBSUF5wVFaE8UWSgdPAxBmPFPridDD-CYHFqVwztitSuOLUrjsmhgxMT265N-Ev-X_oFJdl_mQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Phuong, Nguyen Duc</creator><creator>Long, Le Dinh</creator><creator>Nguyen, Anh Tuan</creator><creator>Baleanu, Dumitru</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20221201</creationdate><title>Regularization of the Inverse Problem for Time Fractional Pseudo-parabolic Equation with Non-local in Time Conditions</title><author>Phuong, Nguyen Duc ; Long, Le Dinh ; Nguyen, Anh Tuan ; Baleanu, Dumitru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-19b3011854cb7b9f58c4bab4025f7b7ba5caedfe398e4e0289f6dc2a0b1b3abd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Differential equations</topic><topic>Ill posed problems</topic><topic>Inverse problems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phuong, Nguyen Duc</creatorcontrib><creatorcontrib>Long, Le Dinh</creatorcontrib><creatorcontrib>Nguyen, Anh Tuan</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phuong, Nguyen Duc</au><au>Long, Le Dinh</au><au>Nguyen, Anh Tuan</au><au>Baleanu, Dumitru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularization of the Inverse Problem for Time Fractional Pseudo-parabolic Equation with Non-local in Time Conditions</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>38</volume><issue>12</issue><spage>2199</spage><epage>2219</epage><pages>2199-2219</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>This paper is devoted to identifying an unknown source for a time-fractional diffusion equation in a general bounded domain. First, we prove the problem is non-well posed and the stability of the source function. Second, by using the Modified Fractional Landweber method, we present regularization solutions and show the convergence rate between regularization solutions and sought solution are given under a priori and a posteriori choice rules of the regularization parameter, respectively. Finally, we present an illustrative numerical example to test the results of our theory.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10114-022-1234-z</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 2022-12, Vol.38 (12), p.2199-2219
issn 1439-8516
1439-7617
language eng
recordid cdi_proquest_journals_2767569127
source SpringerNature Journals; Alma/SFX Local Collection
subjects Differential equations
Ill posed problems
Inverse problems
Mathematics
Mathematics and Statistics
Regularization
title Regularization of the Inverse Problem for Time Fractional Pseudo-parabolic Equation with Non-local in Time Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularization%20of%20the%20Inverse%20Problem%20for%20Time%20Fractional%20Pseudo-parabolic%20Equation%20with%20Non-local%20in%20Time%20Conditions&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Phuong,%20Nguyen%20Duc&rft.date=2022-12-01&rft.volume=38&rft.issue=12&rft.spage=2199&rft.epage=2219&rft.pages=2199-2219&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-022-1234-z&rft_dat=%3Cproquest_cross%3E2767569127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767569127&rft_id=info:pmid/&rfr_iscdi=true