Transpiration-inspired Capillary for Synchronous Synthesis and Patterning of Silver Nanoparticles
T raditional synthesis strategy of nanomaterials with complicated process and high cost limits their applications. Here, we propose a facile process for the synchronous synthesis and patterning of silver nanoparticles(Ag NPs) through the self-driven microchannel reactor with the capillary effect ins...
Gespeichert in:
Veröffentlicht in: | Chemical research in Chinese universities 2023-02, Vol.39 (1), p.133-138 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | 1 |
container_start_page | 133 |
container_title | Chemical research in Chinese universities |
container_volume | 39 |
creator | Chen, Bingda Zhang, Zelong Su, Meng Qin, Feifei Pan, Qi Xie, Daixi Yang, Xu Zhang, Kun Zhang, Zeying Xie, Hongfei Carmeliet, Jan Song, Yanlin |
description | T
raditional synthesis strategy of nanomaterials with complicated process and high cost limits their applications. Here, we propose a facile process for the synchronous synthesis and patterning of silver nanoparticles(Ag NPs) through the self-driven microchannel reactor with the capillary effect inspired by transpiration. The evaporation contributes to capillary and accumulation effects in the microchannels. The silver reactant-containing droplets can be spontaneously divided and distributed in multiple microchannels during the whole fabrication process by the capillary effect. The newly formed Ag NPs at the gas-liquid interface can be assembled on both sides of the microchannels by the accumulation effect. The capillary effect decreases the disturbances, which ensures the uniformity of the patterning. By the combination of microchannels with different widths, various Ag NPs-assembled patterns with stable electrical properties are achieved. This efficient strategy with a simple fabrication procedure is towards the technological engineering of nanoscale architected materials. |
doi_str_mv | 10.1007/s40242-023-2325-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2767567338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767567338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2b057a1edc9d7036bdef1f962781a270f77fc6952807a26493dfefbfe592ae0f3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWB8_wF3AdfQmmUmapRRfUFRoXYd0JmlTxmRMpkL_vakjuHJ1D5fvnMs9CF1RuKEA8jZXwCpGgHHCOKuJOkITxigQTiU9RpMClSVUcIrOct4CcCVENUFmmUzIvU9m8DEQ_6Nti2em911n0h67mPBiH5pNiiHu8kEPG5t9xia0-M0Mg03BhzWODi9892UTfjEh9iYNvulsvkAnznTZXv7Oc_T-cL-cPZH56-Pz7G5OGk7FQNgKammobRvVSuBi1VpHnRJMTqlhEpyUrhGqZlOQholK8dZZt3K2VsxYcPwcXY-5fYqfO5sHvY27FMpJzaSQtZCcTwtFR6pJMedkne6T_yh_agr60KQem9SlSX1oUqviYaMnFzasbfpL_t_0DYUYeCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767567338</pqid></control><display><type>article</type><title>Transpiration-inspired Capillary for Synchronous Synthesis and Patterning of Silver Nanoparticles</title><source>Springer Journals</source><creator>Chen, Bingda ; Zhang, Zelong ; Su, Meng ; Qin, Feifei ; Pan, Qi ; Xie, Daixi ; Yang, Xu ; Zhang, Kun ; Zhang, Zeying ; Xie, Hongfei ; Carmeliet, Jan ; Song, Yanlin</creator><creatorcontrib>Chen, Bingda ; Zhang, Zelong ; Su, Meng ; Qin, Feifei ; Pan, Qi ; Xie, Daixi ; Yang, Xu ; Zhang, Kun ; Zhang, Zeying ; Xie, Hongfei ; Carmeliet, Jan ; Song, Yanlin</creatorcontrib><description>T
raditional synthesis strategy of nanomaterials with complicated process and high cost limits their applications. Here, we propose a facile process for the synchronous synthesis and patterning of silver nanoparticles(Ag NPs) through the self-driven microchannel reactor with the capillary effect inspired by transpiration. The evaporation contributes to capillary and accumulation effects in the microchannels. The silver reactant-containing droplets can be spontaneously divided and distributed in multiple microchannels during the whole fabrication process by the capillary effect. The newly formed Ag NPs at the gas-liquid interface can be assembled on both sides of the microchannels by the accumulation effect. The capillary effect decreases the disturbances, which ensures the uniformity of the patterning. By the combination of microchannels with different widths, various Ag NPs-assembled patterns with stable electrical properties are achieved. This efficient strategy with a simple fabrication procedure is towards the technological engineering of nanoscale architected materials.</description><identifier>ISSN: 1005-9040</identifier><identifier>EISSN: 2210-3171</identifier><identifier>DOI: 10.1007/s40242-023-2325-9</identifier><language>eng</language><publisher>Changchun: Jilin University and The Editorial Department of Chemical Research in Chinese Universities</publisher><subject>Accumulation ; Analytical Chemistry ; Capillarity ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Electrical properties ; Inorganic Chemistry ; Microchannels ; Nanomaterials ; Nanoparticles ; Organic Chemistry ; Physical Chemistry ; Silver ; Synthesis ; Transpiration</subject><ispartof>Chemical research in Chinese universities, 2023-02, Vol.39 (1), p.133-138</ispartof><rights>Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2022</rights><rights>Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2b057a1edc9d7036bdef1f962781a270f77fc6952807a26493dfefbfe592ae0f3</citedby><cites>FETCH-LOGICAL-c316t-2b057a1edc9d7036bdef1f962781a270f77fc6952807a26493dfefbfe592ae0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40242-023-2325-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40242-023-2325-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Bingda</creatorcontrib><creatorcontrib>Zhang, Zelong</creatorcontrib><creatorcontrib>Su, Meng</creatorcontrib><creatorcontrib>Qin, Feifei</creatorcontrib><creatorcontrib>Pan, Qi</creatorcontrib><creatorcontrib>Xie, Daixi</creatorcontrib><creatorcontrib>Yang, Xu</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Zhang, Zeying</creatorcontrib><creatorcontrib>Xie, Hongfei</creatorcontrib><creatorcontrib>Carmeliet, Jan</creatorcontrib><creatorcontrib>Song, Yanlin</creatorcontrib><title>Transpiration-inspired Capillary for Synchronous Synthesis and Patterning of Silver Nanoparticles</title><title>Chemical research in Chinese universities</title><addtitle>Chem. Res. Chin. Univ</addtitle><description>T
raditional synthesis strategy of nanomaterials with complicated process and high cost limits their applications. Here, we propose a facile process for the synchronous synthesis and patterning of silver nanoparticles(Ag NPs) through the self-driven microchannel reactor with the capillary effect inspired by transpiration. The evaporation contributes to capillary and accumulation effects in the microchannels. The silver reactant-containing droplets can be spontaneously divided and distributed in multiple microchannels during the whole fabrication process by the capillary effect. The newly formed Ag NPs at the gas-liquid interface can be assembled on both sides of the microchannels by the accumulation effect. The capillary effect decreases the disturbances, which ensures the uniformity of the patterning. By the combination of microchannels with different widths, various Ag NPs-assembled patterns with stable electrical properties are achieved. This efficient strategy with a simple fabrication procedure is towards the technological engineering of nanoscale architected materials.</description><subject>Accumulation</subject><subject>Analytical Chemistry</subject><subject>Capillarity</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Electrical properties</subject><subject>Inorganic Chemistry</subject><subject>Microchannels</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Silver</subject><subject>Synthesis</subject><subject>Transpiration</subject><issn>1005-9040</issn><issn>2210-3171</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWB8_wF3AdfQmmUmapRRfUFRoXYd0JmlTxmRMpkL_vakjuHJ1D5fvnMs9CF1RuKEA8jZXwCpGgHHCOKuJOkITxigQTiU9RpMClSVUcIrOct4CcCVENUFmmUzIvU9m8DEQ_6Nti2em911n0h67mPBiH5pNiiHu8kEPG5t9xia0-M0Mg03BhzWODi9892UTfjEh9iYNvulsvkAnznTZXv7Oc_T-cL-cPZH56-Pz7G5OGk7FQNgKammobRvVSuBi1VpHnRJMTqlhEpyUrhGqZlOQholK8dZZt3K2VsxYcPwcXY-5fYqfO5sHvY27FMpJzaSQtZCcTwtFR6pJMedkne6T_yh_agr60KQem9SlSX1oUqviYaMnFzasbfpL_t_0DYUYeCM</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Chen, Bingda</creator><creator>Zhang, Zelong</creator><creator>Su, Meng</creator><creator>Qin, Feifei</creator><creator>Pan, Qi</creator><creator>Xie, Daixi</creator><creator>Yang, Xu</creator><creator>Zhang, Kun</creator><creator>Zhang, Zeying</creator><creator>Xie, Hongfei</creator><creator>Carmeliet, Jan</creator><creator>Song, Yanlin</creator><general>Jilin University and The Editorial Department of Chemical Research in Chinese Universities</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230201</creationdate><title>Transpiration-inspired Capillary for Synchronous Synthesis and Patterning of Silver Nanoparticles</title><author>Chen, Bingda ; Zhang, Zelong ; Su, Meng ; Qin, Feifei ; Pan, Qi ; Xie, Daixi ; Yang, Xu ; Zhang, Kun ; Zhang, Zeying ; Xie, Hongfei ; Carmeliet, Jan ; Song, Yanlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2b057a1edc9d7036bdef1f962781a270f77fc6952807a26493dfefbfe592ae0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accumulation</topic><topic>Analytical Chemistry</topic><topic>Capillarity</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Electrical properties</topic><topic>Inorganic Chemistry</topic><topic>Microchannels</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Silver</topic><topic>Synthesis</topic><topic>Transpiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Bingda</creatorcontrib><creatorcontrib>Zhang, Zelong</creatorcontrib><creatorcontrib>Su, Meng</creatorcontrib><creatorcontrib>Qin, Feifei</creatorcontrib><creatorcontrib>Pan, Qi</creatorcontrib><creatorcontrib>Xie, Daixi</creatorcontrib><creatorcontrib>Yang, Xu</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Zhang, Zeying</creatorcontrib><creatorcontrib>Xie, Hongfei</creatorcontrib><creatorcontrib>Carmeliet, Jan</creatorcontrib><creatorcontrib>Song, Yanlin</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical research in Chinese universities</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Bingda</au><au>Zhang, Zelong</au><au>Su, Meng</au><au>Qin, Feifei</au><au>Pan, Qi</au><au>Xie, Daixi</au><au>Yang, Xu</au><au>Zhang, Kun</au><au>Zhang, Zeying</au><au>Xie, Hongfei</au><au>Carmeliet, Jan</au><au>Song, Yanlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transpiration-inspired Capillary for Synchronous Synthesis and Patterning of Silver Nanoparticles</atitle><jtitle>Chemical research in Chinese universities</jtitle><stitle>Chem. Res. Chin. Univ</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>39</volume><issue>1</issue><spage>133</spage><epage>138</epage><pages>133-138</pages><issn>1005-9040</issn><eissn>2210-3171</eissn><abstract>T
raditional synthesis strategy of nanomaterials with complicated process and high cost limits their applications. Here, we propose a facile process for the synchronous synthesis and patterning of silver nanoparticles(Ag NPs) through the self-driven microchannel reactor with the capillary effect inspired by transpiration. The evaporation contributes to capillary and accumulation effects in the microchannels. The silver reactant-containing droplets can be spontaneously divided and distributed in multiple microchannels during the whole fabrication process by the capillary effect. The newly formed Ag NPs at the gas-liquid interface can be assembled on both sides of the microchannels by the accumulation effect. The capillary effect decreases the disturbances, which ensures the uniformity of the patterning. By the combination of microchannels with different widths, various Ag NPs-assembled patterns with stable electrical properties are achieved. This efficient strategy with a simple fabrication procedure is towards the technological engineering of nanoscale architected materials.</abstract><cop>Changchun</cop><pub>Jilin University and The Editorial Department of Chemical Research in Chinese Universities</pub><doi>10.1007/s40242-023-2325-9</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1005-9040 |
ispartof | Chemical research in Chinese universities, 2023-02, Vol.39 (1), p.133-138 |
issn | 1005-9040 2210-3171 |
language | eng |
recordid | cdi_proquest_journals_2767567338 |
source | Springer Journals |
subjects | Accumulation Analytical Chemistry Capillarity Chemistry Chemistry and Materials Science Chemistry/Food Science Electrical properties Inorganic Chemistry Microchannels Nanomaterials Nanoparticles Organic Chemistry Physical Chemistry Silver Synthesis Transpiration |
title | Transpiration-inspired Capillary for Synchronous Synthesis and Patterning of Silver Nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transpiration-inspired%20Capillary%20for%20Synchronous%20Synthesis%20and%20Patterning%20of%20Silver%20Nanoparticles&rft.jtitle=Chemical%20research%20in%20Chinese%20universities&rft.au=Chen,%20Bingda&rft.date=2023-02-01&rft.volume=39&rft.issue=1&rft.spage=133&rft.epage=138&rft.pages=133-138&rft.issn=1005-9040&rft.eissn=2210-3171&rft_id=info:doi/10.1007/s40242-023-2325-9&rft_dat=%3Cproquest_cross%3E2767567338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767567338&rft_id=info:pmid/&rfr_iscdi=true |