Measurement of thermal properties of liquid analytes using microfluidic resonators via photothermal modulation

Understanding the thermal properties of fluids at the nanoscale with high spatial, temporal, and thermal resolution are on great demand in the fields of MEMS, drug development, biomedical devices, and analytical systems. Microfluidic channel-integrated cantilevers are considered as an established be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A. Physical. 2022-11, Vol.347, p.113994, Article 113994
Hauptverfasser: Abraham, Rosmi, Yoon, Yeowon, Khan, Faheem, Bukhari, Syed A., Kim, Chun-il, Thundat, Thomas, Chung, Hyun-Joong, Lee, Jungchul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 113994
container_title Sensors and actuators. A. Physical.
container_volume 347
creator Abraham, Rosmi
Yoon, Yeowon
Khan, Faheem
Bukhari, Syed A.
Kim, Chun-il
Thundat, Thomas
Chung, Hyun-Joong
Lee, Jungchul
description Understanding the thermal properties of fluids at the nanoscale with high spatial, temporal, and thermal resolution are on great demand in the fields of MEMS, drug development, biomedical devices, and analytical systems. Microfluidic channel-integrated cantilevers are considered as an established benchtop sensor platform for physical and thermal characterization of materials at the picogram amount of analytes. This paper reports analysis of thermal characteristics of liquid analytes using photothermal heating effect of the microfluidic cantilever. Using real-time tracking of frequency shift of microfluidic resonator, the thermal properties of liquid samples can be estimated whilst the liquid analytes in the cantilever are locally heated by laser-induced irradiation. The heating results in the expansion of the liquid inside the channel which induces thermal stress on the walls of the channel. This thermal stress contributes to the rise of the resonance frequency of the microfluidic resonator and, therefore, the frequency shift is linearly dependent on the volumetric coefficient expansion of the liquid. A threefold improved sensitivity is observed when the second order flexural vibration mode is analyzed compared to that of the fundamental resonance. This approach, which combines photothermal heating and the dynamic mode of operation, can serve as a platform for the development of a portable, lab on a chip device for the use of real time detection of thermomechanical properties of fluids at low cost. [Display omitted] •Photothermal heating was used to characterize the thermal properties of fluids using a microfluidic cantilever.•Resonance frequency of microfluidic cantilever is affected by volumetric expansion of the liquid inside the channel.•The dynamics of the system were explained using the modified Euler-Bernoulli equation incorporating surface stress.
doi_str_mv 10.1016/j.sna.2022.113994
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2767463446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092442472200629X</els_id><sourcerecordid>2767463446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-28279121eaedf79e3be6d0341eff2b7e409d04cb84e61e62a3a9d8eb268bf5f93</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoDvBU8t-ZrmwZPsvgFK170HNL2xU1pm90kXdh_b5bq1cPjwbw3w8wgdEtwQTAp77sijLqgmNKCECYlP0MLUgmWM1zKc7TAkvKcUy4u0VUIHcaYMSEWaHwHHSYPA4wxcyaLW_CD7rOddzvw0UI4ob3dT7bN9Kj7Y0zQFOz4nQ228c706WKbzENwo47Oh-xgdbbbuuj-xAbXTr2O1o3X6MLoPsDN716ir-enz_Vrvvl4eVs_bvKG0VXMaUWFJJSAhtYICayGssWMEzCG1gI4li3mTV1xKAmUVDMt2wpqWla1WRnJluhu1k059hOEqDo3-WQ_KCpKwUvG0ywRmb9SjhA8GLXzdtD-qAhWp1pVp1Kt6lSrmmtNnIeZA8n-wYJXobEwNtBaD01UrbP_sH8AqraDUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767463446</pqid></control><display><type>article</type><title>Measurement of thermal properties of liquid analytes using microfluidic resonators via photothermal modulation</title><source>Elsevier ScienceDirect Journals</source><creator>Abraham, Rosmi ; Yoon, Yeowon ; Khan, Faheem ; Bukhari, Syed A. ; Kim, Chun-il ; Thundat, Thomas ; Chung, Hyun-Joong ; Lee, Jungchul</creator><creatorcontrib>Abraham, Rosmi ; Yoon, Yeowon ; Khan, Faheem ; Bukhari, Syed A. ; Kim, Chun-il ; Thundat, Thomas ; Chung, Hyun-Joong ; Lee, Jungchul</creatorcontrib><description>Understanding the thermal properties of fluids at the nanoscale with high spatial, temporal, and thermal resolution are on great demand in the fields of MEMS, drug development, biomedical devices, and analytical systems. Microfluidic channel-integrated cantilevers are considered as an established benchtop sensor platform for physical and thermal characterization of materials at the picogram amount of analytes. This paper reports analysis of thermal characteristics of liquid analytes using photothermal heating effect of the microfluidic cantilever. Using real-time tracking of frequency shift of microfluidic resonator, the thermal properties of liquid samples can be estimated whilst the liquid analytes in the cantilever are locally heated by laser-induced irradiation. The heating results in the expansion of the liquid inside the channel which induces thermal stress on the walls of the channel. This thermal stress contributes to the rise of the resonance frequency of the microfluidic resonator and, therefore, the frequency shift is linearly dependent on the volumetric coefficient expansion of the liquid. A threefold improved sensitivity is observed when the second order flexural vibration mode is analyzed compared to that of the fundamental resonance. This approach, which combines photothermal heating and the dynamic mode of operation, can serve as a platform for the development of a portable, lab on a chip device for the use of real time detection of thermomechanical properties of fluids at low cost. [Display omitted] •Photothermal heating was used to characterize the thermal properties of fluids using a microfluidic cantilever.•Resonance frequency of microfluidic cantilever is affected by volumetric expansion of the liquid inside the channel.•The dynamics of the system were explained using the modified Euler-Bernoulli equation incorporating surface stress.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2022.113994</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Analytical chemistry ; Biomedical materials ; Fluids ; Frequency shift ; Heat conductivity ; Heat transfer ; High temperature effects ; Laser beam heating ; MEMS ; Microfluidic cantilever ; Microfluidics ; Photothermal heating ; Portable equipment ; Real time ; Resonance ; Resonators ; Sensors ; Temperature ; Thermal expansion ; Thermal stress ; Thermodynamic properties ; Thermomechanical characterization ; Thermomechanical properties ; Vibration analysis ; Vibration mode</subject><ispartof>Sensors and actuators. A. Physical., 2022-11, Vol.347, p.113994, Article 113994</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-28279121eaedf79e3be6d0341eff2b7e409d04cb84e61e62a3a9d8eb268bf5f93</citedby><cites>FETCH-LOGICAL-c325t-28279121eaedf79e3be6d0341eff2b7e409d04cb84e61e62a3a9d8eb268bf5f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S092442472200629X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Abraham, Rosmi</creatorcontrib><creatorcontrib>Yoon, Yeowon</creatorcontrib><creatorcontrib>Khan, Faheem</creatorcontrib><creatorcontrib>Bukhari, Syed A.</creatorcontrib><creatorcontrib>Kim, Chun-il</creatorcontrib><creatorcontrib>Thundat, Thomas</creatorcontrib><creatorcontrib>Chung, Hyun-Joong</creatorcontrib><creatorcontrib>Lee, Jungchul</creatorcontrib><title>Measurement of thermal properties of liquid analytes using microfluidic resonators via photothermal modulation</title><title>Sensors and actuators. A. Physical.</title><description>Understanding the thermal properties of fluids at the nanoscale with high spatial, temporal, and thermal resolution are on great demand in the fields of MEMS, drug development, biomedical devices, and analytical systems. Microfluidic channel-integrated cantilevers are considered as an established benchtop sensor platform for physical and thermal characterization of materials at the picogram amount of analytes. This paper reports analysis of thermal characteristics of liquid analytes using photothermal heating effect of the microfluidic cantilever. Using real-time tracking of frequency shift of microfluidic resonator, the thermal properties of liquid samples can be estimated whilst the liquid analytes in the cantilever are locally heated by laser-induced irradiation. The heating results in the expansion of the liquid inside the channel which induces thermal stress on the walls of the channel. This thermal stress contributes to the rise of the resonance frequency of the microfluidic resonator and, therefore, the frequency shift is linearly dependent on the volumetric coefficient expansion of the liquid. A threefold improved sensitivity is observed when the second order flexural vibration mode is analyzed compared to that of the fundamental resonance. This approach, which combines photothermal heating and the dynamic mode of operation, can serve as a platform for the development of a portable, lab on a chip device for the use of real time detection of thermomechanical properties of fluids at low cost. [Display omitted] •Photothermal heating was used to characterize the thermal properties of fluids using a microfluidic cantilever.•Resonance frequency of microfluidic cantilever is affected by volumetric expansion of the liquid inside the channel.•The dynamics of the system were explained using the modified Euler-Bernoulli equation incorporating surface stress.</description><subject>Analytical chemistry</subject><subject>Biomedical materials</subject><subject>Fluids</subject><subject>Frequency shift</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>High temperature effects</subject><subject>Laser beam heating</subject><subject>MEMS</subject><subject>Microfluidic cantilever</subject><subject>Microfluidics</subject><subject>Photothermal heating</subject><subject>Portable equipment</subject><subject>Real time</subject><subject>Resonance</subject><subject>Resonators</subject><subject>Sensors</subject><subject>Temperature</subject><subject>Thermal expansion</subject><subject>Thermal stress</subject><subject>Thermodynamic properties</subject><subject>Thermomechanical characterization</subject><subject>Thermomechanical properties</subject><subject>Vibration analysis</subject><subject>Vibration mode</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoDvBU8t-ZrmwZPsvgFK170HNL2xU1pm90kXdh_b5bq1cPjwbw3w8wgdEtwQTAp77sijLqgmNKCECYlP0MLUgmWM1zKc7TAkvKcUy4u0VUIHcaYMSEWaHwHHSYPA4wxcyaLW_CD7rOddzvw0UI4ob3dT7bN9Kj7Y0zQFOz4nQ228c706WKbzENwo47Oh-xgdbbbuuj-xAbXTr2O1o3X6MLoPsDN716ir-enz_Vrvvl4eVs_bvKG0VXMaUWFJJSAhtYICayGssWMEzCG1gI4li3mTV1xKAmUVDMt2wpqWla1WRnJluhu1k059hOEqDo3-WQ_KCpKwUvG0ywRmb9SjhA8GLXzdtD-qAhWp1pVp1Kt6lSrmmtNnIeZA8n-wYJXobEwNtBaD01UrbP_sH8AqraDUw</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Abraham, Rosmi</creator><creator>Yoon, Yeowon</creator><creator>Khan, Faheem</creator><creator>Bukhari, Syed A.</creator><creator>Kim, Chun-il</creator><creator>Thundat, Thomas</creator><creator>Chung, Hyun-Joong</creator><creator>Lee, Jungchul</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20221101</creationdate><title>Measurement of thermal properties of liquid analytes using microfluidic resonators via photothermal modulation</title><author>Abraham, Rosmi ; Yoon, Yeowon ; Khan, Faheem ; Bukhari, Syed A. ; Kim, Chun-il ; Thundat, Thomas ; Chung, Hyun-Joong ; Lee, Jungchul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-28279121eaedf79e3be6d0341eff2b7e409d04cb84e61e62a3a9d8eb268bf5f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical chemistry</topic><topic>Biomedical materials</topic><topic>Fluids</topic><topic>Frequency shift</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>High temperature effects</topic><topic>Laser beam heating</topic><topic>MEMS</topic><topic>Microfluidic cantilever</topic><topic>Microfluidics</topic><topic>Photothermal heating</topic><topic>Portable equipment</topic><topic>Real time</topic><topic>Resonance</topic><topic>Resonators</topic><topic>Sensors</topic><topic>Temperature</topic><topic>Thermal expansion</topic><topic>Thermal stress</topic><topic>Thermodynamic properties</topic><topic>Thermomechanical characterization</topic><topic>Thermomechanical properties</topic><topic>Vibration analysis</topic><topic>Vibration mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abraham, Rosmi</creatorcontrib><creatorcontrib>Yoon, Yeowon</creatorcontrib><creatorcontrib>Khan, Faheem</creatorcontrib><creatorcontrib>Bukhari, Syed A.</creatorcontrib><creatorcontrib>Kim, Chun-il</creatorcontrib><creatorcontrib>Thundat, Thomas</creatorcontrib><creatorcontrib>Chung, Hyun-Joong</creatorcontrib><creatorcontrib>Lee, Jungchul</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abraham, Rosmi</au><au>Yoon, Yeowon</au><au>Khan, Faheem</au><au>Bukhari, Syed A.</au><au>Kim, Chun-il</au><au>Thundat, Thomas</au><au>Chung, Hyun-Joong</au><au>Lee, Jungchul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of thermal properties of liquid analytes using microfluidic resonators via photothermal modulation</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>347</volume><spage>113994</spage><pages>113994-</pages><artnum>113994</artnum><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>Understanding the thermal properties of fluids at the nanoscale with high spatial, temporal, and thermal resolution are on great demand in the fields of MEMS, drug development, biomedical devices, and analytical systems. Microfluidic channel-integrated cantilevers are considered as an established benchtop sensor platform for physical and thermal characterization of materials at the picogram amount of analytes. This paper reports analysis of thermal characteristics of liquid analytes using photothermal heating effect of the microfluidic cantilever. Using real-time tracking of frequency shift of microfluidic resonator, the thermal properties of liquid samples can be estimated whilst the liquid analytes in the cantilever are locally heated by laser-induced irradiation. The heating results in the expansion of the liquid inside the channel which induces thermal stress on the walls of the channel. This thermal stress contributes to the rise of the resonance frequency of the microfluidic resonator and, therefore, the frequency shift is linearly dependent on the volumetric coefficient expansion of the liquid. A threefold improved sensitivity is observed when the second order flexural vibration mode is analyzed compared to that of the fundamental resonance. This approach, which combines photothermal heating and the dynamic mode of operation, can serve as a platform for the development of a portable, lab on a chip device for the use of real time detection of thermomechanical properties of fluids at low cost. [Display omitted] •Photothermal heating was used to characterize the thermal properties of fluids using a microfluidic cantilever.•Resonance frequency of microfluidic cantilever is affected by volumetric expansion of the liquid inside the channel.•The dynamics of the system were explained using the modified Euler-Bernoulli equation incorporating surface stress.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2022.113994</doi></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2022-11, Vol.347, p.113994, Article 113994
issn 0924-4247
1873-3069
language eng
recordid cdi_proquest_journals_2767463446
source Elsevier ScienceDirect Journals
subjects Analytical chemistry
Biomedical materials
Fluids
Frequency shift
Heat conductivity
Heat transfer
High temperature effects
Laser beam heating
MEMS
Microfluidic cantilever
Microfluidics
Photothermal heating
Portable equipment
Real time
Resonance
Resonators
Sensors
Temperature
Thermal expansion
Thermal stress
Thermodynamic properties
Thermomechanical characterization
Thermomechanical properties
Vibration analysis
Vibration mode
title Measurement of thermal properties of liquid analytes using microfluidic resonators via photothermal modulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A04%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20thermal%20properties%20of%20liquid%20analytes%20using%20microfluidic%20resonators%20via%20photothermal%20modulation&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Abraham,%20Rosmi&rft.date=2022-11-01&rft.volume=347&rft.spage=113994&rft.pages=113994-&rft.artnum=113994&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2022.113994&rft_dat=%3Cproquest_cross%3E2767463446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767463446&rft_id=info:pmid/&rft_els_id=S092442472200629X&rfr_iscdi=true