Nonlinear model predictive control for improving range-based relative localization by maximizing observability
Wireless ranging measurements have been proposed for enabling multiple Micro Air Vehicles (MAVs) to localize with respect to each other. However, the high-dimensional relative states are weakly observable due to the scalar distance measurement. Hence, the MAVs have degraded relative localization and...
Gespeichert in:
Veröffentlicht in: | International journal of micro air vehicles 2022-01, Vol.14 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | International journal of micro air vehicles |
container_volume | 14 |
creator | Li, Shushuai De Wagter, Christophe de Croon, Guido C. H. E. |
description | Wireless ranging measurements have been proposed for enabling multiple Micro Air Vehicles (MAVs) to localize with respect to each other. However, the high-dimensional relative states are weakly observable due to the scalar distance measurement. Hence, the MAVs have degraded relative localization and control performance under unobservable conditions as can be deduced by the Lie derivatives. This paper presents a nonlinear model predictive control (NMPC) by maximizing the determinant of the observability matrix to generate optimal control inputs, which also satisfy constraints including multi-robot tasks, input limitation, and state bounds. Simulation results validate the localization and control efficacy of the proposed MPC method for range-based multi-MAV systems with weak observability, which has faster convergence time and more accurate localization compared to previously proposed random motions. A real-world experiment on two Crazyflies indicates the optimal states and control behaviours generated by the proposed NMPC. |
doi_str_mv | 10.1177/17568293211073680 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2767409363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_17568293211073680</sage_id><sourcerecordid>2767409363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-4cfd692189d018e3e630df9089674dc978c13a4f8f827d1ad766ed268d649eaf3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGp_gLuA66nJZMxjKcUXFN3oesjkUVIySU2mxfbXm7GKC3F1H3zn3MMF4BKjOcaMXWN2Q3ktSI0xYoRydAIm467iBLHTn74A52CW8xohhPkI4gkIzzF4F4xMsI_aeLhJRjs1uJ2BKoYhRQ9tTND1mxR3LqxgkmFlqk5mo2EyXn6hPirp3aEMMcBuD3v54Xp3GPnYZZN2snPeDfsLcGalz2b2Xafg7f7udfFYLV8enha3y0qVxEPVKKupqDEXukQ1xFCCtBWIC8oarQTjChPZWG55zTSWmlFqdE25po0w0pIpuDr6ltTvW5OHdh23KZSTbc2KBxKEkkLhI6VSzDkZ226S62Xatxi142fbP58tmvlRk-XK_Lr-L_gEt156ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767409363</pqid></control><display><type>article</type><title>Nonlinear model predictive control for improving range-based relative localization by maximizing observability</title><source>DOAJ Directory of Open Access Journals</source><source>Sage Journals GOLD Open Access 2024</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Shushuai ; De Wagter, Christophe ; de Croon, Guido C. H. E.</creator><creatorcontrib>Li, Shushuai ; De Wagter, Christophe ; de Croon, Guido C. H. E.</creatorcontrib><description>Wireless ranging measurements have been proposed for enabling multiple Micro Air Vehicles (MAVs) to localize with respect to each other. However, the high-dimensional relative states are weakly observable due to the scalar distance measurement. Hence, the MAVs have degraded relative localization and control performance under unobservable conditions as can be deduced by the Lie derivatives. This paper presents a nonlinear model predictive control (NMPC) by maximizing the determinant of the observability matrix to generate optimal control inputs, which also satisfy constraints including multi-robot tasks, input limitation, and state bounds. Simulation results validate the localization and control efficacy of the proposed MPC method for range-based multi-MAV systems with weak observability, which has faster convergence time and more accurate localization compared to previously proposed random motions. A real-world experiment on two Crazyflies indicates the optimal states and control behaviours generated by the proposed NMPC.</description><identifier>ISSN: 1756-8293</identifier><identifier>EISSN: 1756-8307</identifier><identifier>DOI: 10.1177/17568293211073680</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Distance measurement ; Localization ; Maximization ; Micro air vehicles (MAV) ; Multiple robots ; Nonlinear control ; Optimal control ; Optimization ; Predictive control</subject><ispartof>International journal of micro air vehicles, 2022-01, Vol.14</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-4cfd692189d018e3e630df9089674dc978c13a4f8f827d1ad766ed268d649eaf3</cites><orcidid>0000-0003-1653-0463 ; 0000-0002-6795-8454 ; 0000-0001-8265-1496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/17568293211073680$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/17568293211073680$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,21966,27853,27924,27925,44945,45333</link.rule.ids></links><search><creatorcontrib>Li, Shushuai</creatorcontrib><creatorcontrib>De Wagter, Christophe</creatorcontrib><creatorcontrib>de Croon, Guido C. H. E.</creatorcontrib><title>Nonlinear model predictive control for improving range-based relative localization by maximizing observability</title><title>International journal of micro air vehicles</title><description>Wireless ranging measurements have been proposed for enabling multiple Micro Air Vehicles (MAVs) to localize with respect to each other. However, the high-dimensional relative states are weakly observable due to the scalar distance measurement. Hence, the MAVs have degraded relative localization and control performance under unobservable conditions as can be deduced by the Lie derivatives. This paper presents a nonlinear model predictive control (NMPC) by maximizing the determinant of the observability matrix to generate optimal control inputs, which also satisfy constraints including multi-robot tasks, input limitation, and state bounds. Simulation results validate the localization and control efficacy of the proposed MPC method for range-based multi-MAV systems with weak observability, which has faster convergence time and more accurate localization compared to previously proposed random motions. A real-world experiment on two Crazyflies indicates the optimal states and control behaviours generated by the proposed NMPC.</description><subject>Distance measurement</subject><subject>Localization</subject><subject>Maximization</subject><subject>Micro air vehicles (MAV)</subject><subject>Multiple robots</subject><subject>Nonlinear control</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Predictive control</subject><issn>1756-8293</issn><issn>1756-8307</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtLAzEUhYMoWGp_gLuA66nJZMxjKcUXFN3oesjkUVIySU2mxfbXm7GKC3F1H3zn3MMF4BKjOcaMXWN2Q3ktSI0xYoRydAIm467iBLHTn74A52CW8xohhPkI4gkIzzF4F4xMsI_aeLhJRjs1uJ2BKoYhRQ9tTND1mxR3LqxgkmFlqk5mo2EyXn6hPirp3aEMMcBuD3v54Xp3GPnYZZN2snPeDfsLcGalz2b2Xafg7f7udfFYLV8enha3y0qVxEPVKKupqDEXukQ1xFCCtBWIC8oarQTjChPZWG55zTSWmlFqdE25po0w0pIpuDr6ltTvW5OHdh23KZSTbc2KBxKEkkLhI6VSzDkZ226S62Xatxi142fbP58tmvlRk-XK_Lr-L_gEt156ew</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Li, Shushuai</creator><creator>De Wagter, Christophe</creator><creator>de Croon, Guido C. H. E.</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-1653-0463</orcidid><orcidid>https://orcid.org/0000-0002-6795-8454</orcidid><orcidid>https://orcid.org/0000-0001-8265-1496</orcidid></search><sort><creationdate>202201</creationdate><title>Nonlinear model predictive control for improving range-based relative localization by maximizing observability</title><author>Li, Shushuai ; De Wagter, Christophe ; de Croon, Guido C. H. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-4cfd692189d018e3e630df9089674dc978c13a4f8f827d1ad766ed268d649eaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Distance measurement</topic><topic>Localization</topic><topic>Maximization</topic><topic>Micro air vehicles (MAV)</topic><topic>Multiple robots</topic><topic>Nonlinear control</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Predictive control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shushuai</creatorcontrib><creatorcontrib>De Wagter, Christophe</creatorcontrib><creatorcontrib>de Croon, Guido C. H. E.</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of micro air vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shushuai</au><au>De Wagter, Christophe</au><au>de Croon, Guido C. H. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear model predictive control for improving range-based relative localization by maximizing observability</atitle><jtitle>International journal of micro air vehicles</jtitle><date>2022-01</date><risdate>2022</risdate><volume>14</volume><issn>1756-8293</issn><eissn>1756-8307</eissn><abstract>Wireless ranging measurements have been proposed for enabling multiple Micro Air Vehicles (MAVs) to localize with respect to each other. However, the high-dimensional relative states are weakly observable due to the scalar distance measurement. Hence, the MAVs have degraded relative localization and control performance under unobservable conditions as can be deduced by the Lie derivatives. This paper presents a nonlinear model predictive control (NMPC) by maximizing the determinant of the observability matrix to generate optimal control inputs, which also satisfy constraints including multi-robot tasks, input limitation, and state bounds. Simulation results validate the localization and control efficacy of the proposed MPC method for range-based multi-MAV systems with weak observability, which has faster convergence time and more accurate localization compared to previously proposed random motions. A real-world experiment on two Crazyflies indicates the optimal states and control behaviours generated by the proposed NMPC.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/17568293211073680</doi><orcidid>https://orcid.org/0000-0003-1653-0463</orcidid><orcidid>https://orcid.org/0000-0002-6795-8454</orcidid><orcidid>https://orcid.org/0000-0001-8265-1496</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1756-8293 |
ispartof | International journal of micro air vehicles, 2022-01, Vol.14 |
issn | 1756-8293 1756-8307 |
language | eng |
recordid | cdi_proquest_journals_2767409363 |
source | DOAJ Directory of Open Access Journals; Sage Journals GOLD Open Access 2024; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Distance measurement Localization Maximization Micro air vehicles (MAV) Multiple robots Nonlinear control Optimal control Optimization Predictive control |
title | Nonlinear model predictive control for improving range-based relative localization by maximizing observability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20model%20predictive%20control%20for%20improving%20range-based%20relative%20localization%20by%20maximizing%20observability&rft.jtitle=International%20journal%20of%20micro%20air%20vehicles&rft.au=Li,%20Shushuai&rft.date=2022-01&rft.volume=14&rft.issn=1756-8293&rft.eissn=1756-8307&rft_id=info:doi/10.1177/17568293211073680&rft_dat=%3Cproquest_cross%3E2767409363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767409363&rft_id=info:pmid/&rft_sage_id=10.1177_17568293211073680&rfr_iscdi=true |