Nonlinear model predictive control for improving range-based relative localization by maximizing observability

Wireless ranging measurements have been proposed for enabling multiple Micro Air Vehicles (MAVs) to localize with respect to each other. However, the high-dimensional relative states are weakly observable due to the scalar distance measurement. Hence, the MAVs have degraded relative localization and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of micro air vehicles 2022-01, Vol.14
Hauptverfasser: Li, Shushuai, De Wagter, Christophe, de Croon, Guido C. H. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title International journal of micro air vehicles
container_volume 14
creator Li, Shushuai
De Wagter, Christophe
de Croon, Guido C. H. E.
description Wireless ranging measurements have been proposed for enabling multiple Micro Air Vehicles (MAVs) to localize with respect to each other. However, the high-dimensional relative states are weakly observable due to the scalar distance measurement. Hence, the MAVs have degraded relative localization and control performance under unobservable conditions as can be deduced by the Lie derivatives. This paper presents a nonlinear model predictive control (NMPC) by maximizing the determinant of the observability matrix to generate optimal control inputs, which also satisfy constraints including multi-robot tasks, input limitation, and state bounds. Simulation results validate the localization and control efficacy of the proposed MPC method for range-based multi-MAV systems with weak observability, which has faster convergence time and more accurate localization compared to previously proposed random motions. A real-world experiment on two Crazyflies indicates the optimal states and control behaviours generated by the proposed NMPC.
doi_str_mv 10.1177/17568293211073680
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2767409363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_17568293211073680</sage_id><sourcerecordid>2767409363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-4cfd692189d018e3e630df9089674dc978c13a4f8f827d1ad766ed268d649eaf3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGp_gLuA66nJZMxjKcUXFN3oesjkUVIySU2mxfbXm7GKC3F1H3zn3MMF4BKjOcaMXWN2Q3ktSI0xYoRydAIm467iBLHTn74A52CW8xohhPkI4gkIzzF4F4xMsI_aeLhJRjs1uJ2BKoYhRQ9tTND1mxR3LqxgkmFlqk5mo2EyXn6hPirp3aEMMcBuD3v54Xp3GPnYZZN2snPeDfsLcGalz2b2Xafg7f7udfFYLV8enha3y0qVxEPVKKupqDEXukQ1xFCCtBWIC8oarQTjChPZWG55zTSWmlFqdE25po0w0pIpuDr6ltTvW5OHdh23KZSTbc2KBxKEkkLhI6VSzDkZ226S62Xatxi142fbP58tmvlRk-XK_Lr-L_gEt156ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767409363</pqid></control><display><type>article</type><title>Nonlinear model predictive control for improving range-based relative localization by maximizing observability</title><source>DOAJ Directory of Open Access Journals</source><source>Sage Journals GOLD Open Access 2024</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Shushuai ; De Wagter, Christophe ; de Croon, Guido C. H. E.</creator><creatorcontrib>Li, Shushuai ; De Wagter, Christophe ; de Croon, Guido C. H. E.</creatorcontrib><description>Wireless ranging measurements have been proposed for enabling multiple Micro Air Vehicles (MAVs) to localize with respect to each other. However, the high-dimensional relative states are weakly observable due to the scalar distance measurement. Hence, the MAVs have degraded relative localization and control performance under unobservable conditions as can be deduced by the Lie derivatives. This paper presents a nonlinear model predictive control (NMPC) by maximizing the determinant of the observability matrix to generate optimal control inputs, which also satisfy constraints including multi-robot tasks, input limitation, and state bounds. Simulation results validate the localization and control efficacy of the proposed MPC method for range-based multi-MAV systems with weak observability, which has faster convergence time and more accurate localization compared to previously proposed random motions. A real-world experiment on two Crazyflies indicates the optimal states and control behaviours generated by the proposed NMPC.</description><identifier>ISSN: 1756-8293</identifier><identifier>EISSN: 1756-8307</identifier><identifier>DOI: 10.1177/17568293211073680</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Distance measurement ; Localization ; Maximization ; Micro air vehicles (MAV) ; Multiple robots ; Nonlinear control ; Optimal control ; Optimization ; Predictive control</subject><ispartof>International journal of micro air vehicles, 2022-01, Vol.14</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-4cfd692189d018e3e630df9089674dc978c13a4f8f827d1ad766ed268d649eaf3</cites><orcidid>0000-0003-1653-0463 ; 0000-0002-6795-8454 ; 0000-0001-8265-1496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/17568293211073680$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/17568293211073680$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,21966,27853,27924,27925,44945,45333</link.rule.ids></links><search><creatorcontrib>Li, Shushuai</creatorcontrib><creatorcontrib>De Wagter, Christophe</creatorcontrib><creatorcontrib>de Croon, Guido C. H. E.</creatorcontrib><title>Nonlinear model predictive control for improving range-based relative localization by maximizing observability</title><title>International journal of micro air vehicles</title><description>Wireless ranging measurements have been proposed for enabling multiple Micro Air Vehicles (MAVs) to localize with respect to each other. However, the high-dimensional relative states are weakly observable due to the scalar distance measurement. Hence, the MAVs have degraded relative localization and control performance under unobservable conditions as can be deduced by the Lie derivatives. This paper presents a nonlinear model predictive control (NMPC) by maximizing the determinant of the observability matrix to generate optimal control inputs, which also satisfy constraints including multi-robot tasks, input limitation, and state bounds. Simulation results validate the localization and control efficacy of the proposed MPC method for range-based multi-MAV systems with weak observability, which has faster convergence time and more accurate localization compared to previously proposed random motions. A real-world experiment on two Crazyflies indicates the optimal states and control behaviours generated by the proposed NMPC.</description><subject>Distance measurement</subject><subject>Localization</subject><subject>Maximization</subject><subject>Micro air vehicles (MAV)</subject><subject>Multiple robots</subject><subject>Nonlinear control</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Predictive control</subject><issn>1756-8293</issn><issn>1756-8307</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtLAzEUhYMoWGp_gLuA66nJZMxjKcUXFN3oesjkUVIySU2mxfbXm7GKC3F1H3zn3MMF4BKjOcaMXWN2Q3ktSI0xYoRydAIm467iBLHTn74A52CW8xohhPkI4gkIzzF4F4xMsI_aeLhJRjs1uJ2BKoYhRQ9tTND1mxR3LqxgkmFlqk5mo2EyXn6hPirp3aEMMcBuD3v54Xp3GPnYZZN2snPeDfsLcGalz2b2Xafg7f7udfFYLV8enha3y0qVxEPVKKupqDEXukQ1xFCCtBWIC8oarQTjChPZWG55zTSWmlFqdE25po0w0pIpuDr6ltTvW5OHdh23KZSTbc2KBxKEkkLhI6VSzDkZ226S62Xatxi142fbP58tmvlRk-XK_Lr-L_gEt156ew</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Li, Shushuai</creator><creator>De Wagter, Christophe</creator><creator>de Croon, Guido C. H. E.</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-1653-0463</orcidid><orcidid>https://orcid.org/0000-0002-6795-8454</orcidid><orcidid>https://orcid.org/0000-0001-8265-1496</orcidid></search><sort><creationdate>202201</creationdate><title>Nonlinear model predictive control for improving range-based relative localization by maximizing observability</title><author>Li, Shushuai ; De Wagter, Christophe ; de Croon, Guido C. H. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-4cfd692189d018e3e630df9089674dc978c13a4f8f827d1ad766ed268d649eaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Distance measurement</topic><topic>Localization</topic><topic>Maximization</topic><topic>Micro air vehicles (MAV)</topic><topic>Multiple robots</topic><topic>Nonlinear control</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Predictive control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shushuai</creatorcontrib><creatorcontrib>De Wagter, Christophe</creatorcontrib><creatorcontrib>de Croon, Guido C. H. E.</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of micro air vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shushuai</au><au>De Wagter, Christophe</au><au>de Croon, Guido C. H. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear model predictive control for improving range-based relative localization by maximizing observability</atitle><jtitle>International journal of micro air vehicles</jtitle><date>2022-01</date><risdate>2022</risdate><volume>14</volume><issn>1756-8293</issn><eissn>1756-8307</eissn><abstract>Wireless ranging measurements have been proposed for enabling multiple Micro Air Vehicles (MAVs) to localize with respect to each other. However, the high-dimensional relative states are weakly observable due to the scalar distance measurement. Hence, the MAVs have degraded relative localization and control performance under unobservable conditions as can be deduced by the Lie derivatives. This paper presents a nonlinear model predictive control (NMPC) by maximizing the determinant of the observability matrix to generate optimal control inputs, which also satisfy constraints including multi-robot tasks, input limitation, and state bounds. Simulation results validate the localization and control efficacy of the proposed MPC method for range-based multi-MAV systems with weak observability, which has faster convergence time and more accurate localization compared to previously proposed random motions. A real-world experiment on two Crazyflies indicates the optimal states and control behaviours generated by the proposed NMPC.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/17568293211073680</doi><orcidid>https://orcid.org/0000-0003-1653-0463</orcidid><orcidid>https://orcid.org/0000-0002-6795-8454</orcidid><orcidid>https://orcid.org/0000-0001-8265-1496</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1756-8293
ispartof International journal of micro air vehicles, 2022-01, Vol.14
issn 1756-8293
1756-8307
language eng
recordid cdi_proquest_journals_2767409363
source DOAJ Directory of Open Access Journals; Sage Journals GOLD Open Access 2024; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Distance measurement
Localization
Maximization
Micro air vehicles (MAV)
Multiple robots
Nonlinear control
Optimal control
Optimization
Predictive control
title Nonlinear model predictive control for improving range-based relative localization by maximizing observability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20model%20predictive%20control%20for%20improving%20range-based%20relative%20localization%20by%20maximizing%20observability&rft.jtitle=International%20journal%20of%20micro%20air%20vehicles&rft.au=Li,%20Shushuai&rft.date=2022-01&rft.volume=14&rft.issn=1756-8293&rft.eissn=1756-8307&rft_id=info:doi/10.1177/17568293211073680&rft_dat=%3Cproquest_cross%3E2767409363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767409363&rft_id=info:pmid/&rft_sage_id=10.1177_17568293211073680&rfr_iscdi=true