On the Practical Applicability of the Li Metal‐Based Thermal Evaporation Prelithiation Technique on Si Anodes for Lithium Ion Batteries

Lithium ion batteries (LIBs) using silicon as anode material are endowed with much higher energy density than state‐of‐the‐art graphite‐based LIBs. However, challenges of volume expansion and related dynamic surfaces lead to continuous (re‐)formation of the solid electrolyte interphase, active lithi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2023-01, Vol.13 (3), p.n/a
Hauptverfasser: Adhitama, Egy, Bela, Marlena M., Demelash, Feleke, Stan, Marian C., Winter, Martin, Gomez‐Martin, Aurora, Placke, Tobias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Advanced energy materials
container_volume 13
creator Adhitama, Egy
Bela, Marlena M.
Demelash, Feleke
Stan, Marian C.
Winter, Martin
Gomez‐Martin, Aurora
Placke, Tobias
description Lithium ion batteries (LIBs) using silicon as anode material are endowed with much higher energy density than state‐of‐the‐art graphite‐based LIBs. However, challenges of volume expansion and related dynamic surfaces lead to continuous (re‐)formation of the solid electrolyte interphase, active lithium losses, and rapid capacity fading. Cell failure can be further accelerated when Si is paired with high‐capacity, but also rather reactive Ni‐rich cathodes, such as LiNi0.8Co0.1Mn0.1O2 (NCM‐811). Here, the practical applicability of thermal evaporation of Li metal is evaluated as a prelithiation technique on micrometer‐sized Si (µ‐Si) electrodes in addressing such challenges. NCM‐811 || “prelithiated µ‐Si” full‐cells (25% degree of prelithiation) can attain a higher initial discharge capacity of ≈192 mAh gNCM‐811−1 than the cells without prelithiation with only ≈160 mAh gNCM‐811−1. This study deeply discusses significant consequences of electrode capacity balancing (N:P ratio) with regard to prelithiation on the performance of full‐cells. The trade‐off between cell lifetime and energy density is also highlighted. It is essential to point out that the phenomena discussed here can further guide the direction of research in using the thermal evaporation of Li metal as a prelithiation technique toward its practical application on Si‐based LIBs. A systematic evaluation of the practical applicability of the Li metal‐based thermal evaporation prelithiation technique on Si anodes is reported here. The practical relevance is examined in the LiNi0.8Co0.1Mn0.1O2 || μ‐Si full‐cell setup. The different electrode capacity balancing (N:P ratio) is deeply investigated and the trade‐off between cell lifetime and energy density with regard to the prelithiation is highlighted.
doi_str_mv 10.1002/aenm.202203256
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2767369441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767369441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2876-f72003efb5a7e080a8a2db8ccfa9a4a734329a5e2fb461574a6d7c887ec16203</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhSMEElXpymyJucV2HDsZ26pApZYi0T26OhfFVZoEOwV1Y2XjN_JLcAkqI7fcne57z9YLgmtGR4xSfgtY7Uacck5DHsmzoMckE0MZC3p-mkN-GQyc21JfImE0DHvBx6oibYHkyYJujYaSjJum9MPGlKY9kDr_OS8MWWIL5df75wQcZmRdoN15evYKTW2hNXXlPdBrCtNta9RFZV72SPzybMi4qjN0JK-td_PUfkfm_jKBtkVr0F0FFzmUDge_vR-s72br6cNwsbqfT8eLoeaxksNccUpDzDcRKKQxhRh4tom1ziEBASoUIU8gQp5vhGSREiAzpeNYoWbSp9MPbjrbxtb-c65Nt_XeVv7FlCupQpkIwTw16ihta-cs5mljzQ7sIWU0PQaeHgNPT4F7QdIJ3kyJh3_odDx7XP5pvwGj9YaB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767369441</pqid></control><display><type>article</type><title>On the Practical Applicability of the Li Metal‐Based Thermal Evaporation Prelithiation Technique on Si Anodes for Lithium Ion Batteries</title><source>Wiley Journals</source><creator>Adhitama, Egy ; Bela, Marlena M. ; Demelash, Feleke ; Stan, Marian C. ; Winter, Martin ; Gomez‐Martin, Aurora ; Placke, Tobias</creator><creatorcontrib>Adhitama, Egy ; Bela, Marlena M. ; Demelash, Feleke ; Stan, Marian C. ; Winter, Martin ; Gomez‐Martin, Aurora ; Placke, Tobias</creatorcontrib><description>Lithium ion batteries (LIBs) using silicon as anode material are endowed with much higher energy density than state‐of‐the‐art graphite‐based LIBs. However, challenges of volume expansion and related dynamic surfaces lead to continuous (re‐)formation of the solid electrolyte interphase, active lithium losses, and rapid capacity fading. Cell failure can be further accelerated when Si is paired with high‐capacity, but also rather reactive Ni‐rich cathodes, such as LiNi0.8Co0.1Mn0.1O2 (NCM‐811). Here, the practical applicability of thermal evaporation of Li metal is evaluated as a prelithiation technique on micrometer‐sized Si (µ‐Si) electrodes in addressing such challenges. NCM‐811 || “prelithiated µ‐Si” full‐cells (25% degree of prelithiation) can attain a higher initial discharge capacity of ≈192 mAh gNCM‐811−1 than the cells without prelithiation with only ≈160 mAh gNCM‐811−1. This study deeply discusses significant consequences of electrode capacity balancing (N:P ratio) with regard to prelithiation on the performance of full‐cells. The trade‐off between cell lifetime and energy density is also highlighted. It is essential to point out that the phenomena discussed here can further guide the direction of research in using the thermal evaporation of Li metal as a prelithiation technique toward its practical application on Si‐based LIBs. A systematic evaluation of the practical applicability of the Li metal‐based thermal evaporation prelithiation technique on Si anodes is reported here. The practical relevance is examined in the LiNi0.8Co0.1Mn0.1O2 || μ‐Si full‐cell setup. The different electrode capacity balancing (N:P ratio) is deeply investigated and the trade‐off between cell lifetime and energy density with regard to the prelithiation is highlighted.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202203256</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; cell balancing ; Electrode materials ; Electrodes ; Electrolytic cells ; Evaporation ; Lithium ; Lithium-ion batteries ; Ni‐rich cathodes ; prelithiation ; Rechargeable batteries ; Silicon ; silicon anodes ; Solid electrolytes ; thermal evaporation</subject><ispartof>Advanced energy materials, 2023-01, Vol.13 (3), p.n/a</ispartof><rights>2022 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2876-f72003efb5a7e080a8a2db8ccfa9a4a734329a5e2fb461574a6d7c887ec16203</citedby><cites>FETCH-LOGICAL-c2876-f72003efb5a7e080a8a2db8ccfa9a4a734329a5e2fb461574a6d7c887ec16203</cites><orcidid>0000-0002-7637-1356 ; 0000-0001-7053-3986 ; 0000-0003-4176-5811 ; 0000-0002-2654-9355 ; 0000-0002-9741-2989 ; 0000-0002-2097-5193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202203256$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202203256$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Adhitama, Egy</creatorcontrib><creatorcontrib>Bela, Marlena M.</creatorcontrib><creatorcontrib>Demelash, Feleke</creatorcontrib><creatorcontrib>Stan, Marian C.</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Gomez‐Martin, Aurora</creatorcontrib><creatorcontrib>Placke, Tobias</creatorcontrib><title>On the Practical Applicability of the Li Metal‐Based Thermal Evaporation Prelithiation Technique on Si Anodes for Lithium Ion Batteries</title><title>Advanced energy materials</title><description>Lithium ion batteries (LIBs) using silicon as anode material are endowed with much higher energy density than state‐of‐the‐art graphite‐based LIBs. However, challenges of volume expansion and related dynamic surfaces lead to continuous (re‐)formation of the solid electrolyte interphase, active lithium losses, and rapid capacity fading. Cell failure can be further accelerated when Si is paired with high‐capacity, but also rather reactive Ni‐rich cathodes, such as LiNi0.8Co0.1Mn0.1O2 (NCM‐811). Here, the practical applicability of thermal evaporation of Li metal is evaluated as a prelithiation technique on micrometer‐sized Si (µ‐Si) electrodes in addressing such challenges. NCM‐811 || “prelithiated µ‐Si” full‐cells (25% degree of prelithiation) can attain a higher initial discharge capacity of ≈192 mAh gNCM‐811−1 than the cells without prelithiation with only ≈160 mAh gNCM‐811−1. This study deeply discusses significant consequences of electrode capacity balancing (N:P ratio) with regard to prelithiation on the performance of full‐cells. The trade‐off between cell lifetime and energy density is also highlighted. It is essential to point out that the phenomena discussed here can further guide the direction of research in using the thermal evaporation of Li metal as a prelithiation technique toward its practical application on Si‐based LIBs. A systematic evaluation of the practical applicability of the Li metal‐based thermal evaporation prelithiation technique on Si anodes is reported here. The practical relevance is examined in the LiNi0.8Co0.1Mn0.1O2 || μ‐Si full‐cell setup. The different electrode capacity balancing (N:P ratio) is deeply investigated and the trade‐off between cell lifetime and energy density with regard to the prelithiation is highlighted.</description><subject>Anodes</subject><subject>cell balancing</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytic cells</subject><subject>Evaporation</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Ni‐rich cathodes</subject><subject>prelithiation</subject><subject>Rechargeable batteries</subject><subject>Silicon</subject><subject>silicon anodes</subject><subject>Solid electrolytes</subject><subject>thermal evaporation</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkDFPwzAQhSMEElXpymyJucV2HDsZ26pApZYi0T26OhfFVZoEOwV1Y2XjN_JLcAkqI7fcne57z9YLgmtGR4xSfgtY7Uacck5DHsmzoMckE0MZC3p-mkN-GQyc21JfImE0DHvBx6oibYHkyYJujYaSjJum9MPGlKY9kDr_OS8MWWIL5df75wQcZmRdoN15evYKTW2hNXXlPdBrCtNta9RFZV72SPzybMi4qjN0JK-td_PUfkfm_jKBtkVr0F0FFzmUDge_vR-s72br6cNwsbqfT8eLoeaxksNccUpDzDcRKKQxhRh4tom1ziEBASoUIU8gQp5vhGSREiAzpeNYoWbSp9MPbjrbxtb-c65Nt_XeVv7FlCupQpkIwTw16ihta-cs5mljzQ7sIWU0PQaeHgNPT4F7QdIJ3kyJh3_odDx7XP5pvwGj9YaB</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Adhitama, Egy</creator><creator>Bela, Marlena M.</creator><creator>Demelash, Feleke</creator><creator>Stan, Marian C.</creator><creator>Winter, Martin</creator><creator>Gomez‐Martin, Aurora</creator><creator>Placke, Tobias</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7637-1356</orcidid><orcidid>https://orcid.org/0000-0001-7053-3986</orcidid><orcidid>https://orcid.org/0000-0003-4176-5811</orcidid><orcidid>https://orcid.org/0000-0002-2654-9355</orcidid><orcidid>https://orcid.org/0000-0002-9741-2989</orcidid><orcidid>https://orcid.org/0000-0002-2097-5193</orcidid></search><sort><creationdate>20230101</creationdate><title>On the Practical Applicability of the Li Metal‐Based Thermal Evaporation Prelithiation Technique on Si Anodes for Lithium Ion Batteries</title><author>Adhitama, Egy ; Bela, Marlena M. ; Demelash, Feleke ; Stan, Marian C. ; Winter, Martin ; Gomez‐Martin, Aurora ; Placke, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2876-f72003efb5a7e080a8a2db8ccfa9a4a734329a5e2fb461574a6d7c887ec16203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodes</topic><topic>cell balancing</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytic cells</topic><topic>Evaporation</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Ni‐rich cathodes</topic><topic>prelithiation</topic><topic>Rechargeable batteries</topic><topic>Silicon</topic><topic>silicon anodes</topic><topic>Solid electrolytes</topic><topic>thermal evaporation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhitama, Egy</creatorcontrib><creatorcontrib>Bela, Marlena M.</creatorcontrib><creatorcontrib>Demelash, Feleke</creatorcontrib><creatorcontrib>Stan, Marian C.</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Gomez‐Martin, Aurora</creatorcontrib><creatorcontrib>Placke, Tobias</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adhitama, Egy</au><au>Bela, Marlena M.</au><au>Demelash, Feleke</au><au>Stan, Marian C.</au><au>Winter, Martin</au><au>Gomez‐Martin, Aurora</au><au>Placke, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Practical Applicability of the Li Metal‐Based Thermal Evaporation Prelithiation Technique on Si Anodes for Lithium Ion Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>13</volume><issue>3</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Lithium ion batteries (LIBs) using silicon as anode material are endowed with much higher energy density than state‐of‐the‐art graphite‐based LIBs. However, challenges of volume expansion and related dynamic surfaces lead to continuous (re‐)formation of the solid electrolyte interphase, active lithium losses, and rapid capacity fading. Cell failure can be further accelerated when Si is paired with high‐capacity, but also rather reactive Ni‐rich cathodes, such as LiNi0.8Co0.1Mn0.1O2 (NCM‐811). Here, the practical applicability of thermal evaporation of Li metal is evaluated as a prelithiation technique on micrometer‐sized Si (µ‐Si) electrodes in addressing such challenges. NCM‐811 || “prelithiated µ‐Si” full‐cells (25% degree of prelithiation) can attain a higher initial discharge capacity of ≈192 mAh gNCM‐811−1 than the cells without prelithiation with only ≈160 mAh gNCM‐811−1. This study deeply discusses significant consequences of electrode capacity balancing (N:P ratio) with regard to prelithiation on the performance of full‐cells. The trade‐off between cell lifetime and energy density is also highlighted. It is essential to point out that the phenomena discussed here can further guide the direction of research in using the thermal evaporation of Li metal as a prelithiation technique toward its practical application on Si‐based LIBs. A systematic evaluation of the practical applicability of the Li metal‐based thermal evaporation prelithiation technique on Si anodes is reported here. The practical relevance is examined in the LiNi0.8Co0.1Mn0.1O2 || μ‐Si full‐cell setup. The different electrode capacity balancing (N:P ratio) is deeply investigated and the trade‐off between cell lifetime and energy density with regard to the prelithiation is highlighted.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202203256</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7637-1356</orcidid><orcidid>https://orcid.org/0000-0001-7053-3986</orcidid><orcidid>https://orcid.org/0000-0003-4176-5811</orcidid><orcidid>https://orcid.org/0000-0002-2654-9355</orcidid><orcidid>https://orcid.org/0000-0002-9741-2989</orcidid><orcidid>https://orcid.org/0000-0002-2097-5193</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2023-01, Vol.13 (3), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2767369441
source Wiley Journals
subjects Anodes
cell balancing
Electrode materials
Electrodes
Electrolytic cells
Evaporation
Lithium
Lithium-ion batteries
Ni‐rich cathodes
prelithiation
Rechargeable batteries
Silicon
silicon anodes
Solid electrolytes
thermal evaporation
title On the Practical Applicability of the Li Metal‐Based Thermal Evaporation Prelithiation Technique on Si Anodes for Lithium Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Practical%20Applicability%20of%20the%20Li%20Metal%E2%80%90Based%20Thermal%20Evaporation%20Prelithiation%20Technique%20on%20Si%20Anodes%20for%20Lithium%20Ion%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Adhitama,%20Egy&rft.date=2023-01-01&rft.volume=13&rft.issue=3&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202203256&rft_dat=%3Cproquest_cross%3E2767369441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767369441&rft_id=info:pmid/&rfr_iscdi=true