On the Practical Applicability of the Li Metal‐Based Thermal Evaporation Prelithiation Technique on Si Anodes for Lithium Ion Batteries
Lithium ion batteries (LIBs) using silicon as anode material are endowed with much higher energy density than state‐of‐the‐art graphite‐based LIBs. However, challenges of volume expansion and related dynamic surfaces lead to continuous (re‐)formation of the solid electrolyte interphase, active lithi...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2023-01, Vol.13 (3), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 13 |
creator | Adhitama, Egy Bela, Marlena M. Demelash, Feleke Stan, Marian C. Winter, Martin Gomez‐Martin, Aurora Placke, Tobias |
description | Lithium ion batteries (LIBs) using silicon as anode material are endowed with much higher energy density than state‐of‐the‐art graphite‐based LIBs. However, challenges of volume expansion and related dynamic surfaces lead to continuous (re‐)formation of the solid electrolyte interphase, active lithium losses, and rapid capacity fading. Cell failure can be further accelerated when Si is paired with high‐capacity, but also rather reactive Ni‐rich cathodes, such as LiNi0.8Co0.1Mn0.1O2 (NCM‐811). Here, the practical applicability of thermal evaporation of Li metal is evaluated as a prelithiation technique on micrometer‐sized Si (µ‐Si) electrodes in addressing such challenges. NCM‐811 || “prelithiated µ‐Si” full‐cells (25% degree of prelithiation) can attain a higher initial discharge capacity of ≈192 mAh gNCM‐811−1 than the cells without prelithiation with only ≈160 mAh gNCM‐811−1. This study deeply discusses significant consequences of electrode capacity balancing (N:P ratio) with regard to prelithiation on the performance of full‐cells. The trade‐off between cell lifetime and energy density is also highlighted. It is essential to point out that the phenomena discussed here can further guide the direction of research in using the thermal evaporation of Li metal as a prelithiation technique toward its practical application on Si‐based LIBs.
A systematic evaluation of the practical applicability of the Li metal‐based thermal evaporation prelithiation technique on Si anodes is reported here. The practical relevance is examined in the LiNi0.8Co0.1Mn0.1O2 || μ‐Si full‐cell setup. The different electrode capacity balancing (N:P ratio) is deeply investigated and the trade‐off between cell lifetime and energy density with regard to the prelithiation is highlighted. |
doi_str_mv | 10.1002/aenm.202203256 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2767369441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767369441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2876-f72003efb5a7e080a8a2db8ccfa9a4a734329a5e2fb461574a6d7c887ec16203</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhSMEElXpymyJucV2HDsZ26pApZYi0T26OhfFVZoEOwV1Y2XjN_JLcAkqI7fcne57z9YLgmtGR4xSfgtY7Uacck5DHsmzoMckE0MZC3p-mkN-GQyc21JfImE0DHvBx6oibYHkyYJujYaSjJum9MPGlKY9kDr_OS8MWWIL5df75wQcZmRdoN15evYKTW2hNXXlPdBrCtNta9RFZV72SPzybMi4qjN0JK-td_PUfkfm_jKBtkVr0F0FFzmUDge_vR-s72br6cNwsbqfT8eLoeaxksNccUpDzDcRKKQxhRh4tom1ziEBASoUIU8gQp5vhGSREiAzpeNYoWbSp9MPbjrbxtb-c65Nt_XeVv7FlCupQpkIwTw16ihta-cs5mljzQ7sIWU0PQaeHgNPT4F7QdIJ3kyJh3_odDx7XP5pvwGj9YaB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767369441</pqid></control><display><type>article</type><title>On the Practical Applicability of the Li Metal‐Based Thermal Evaporation Prelithiation Technique on Si Anodes for Lithium Ion Batteries</title><source>Wiley Journals</source><creator>Adhitama, Egy ; Bela, Marlena M. ; Demelash, Feleke ; Stan, Marian C. ; Winter, Martin ; Gomez‐Martin, Aurora ; Placke, Tobias</creator><creatorcontrib>Adhitama, Egy ; Bela, Marlena M. ; Demelash, Feleke ; Stan, Marian C. ; Winter, Martin ; Gomez‐Martin, Aurora ; Placke, Tobias</creatorcontrib><description>Lithium ion batteries (LIBs) using silicon as anode material are endowed with much higher energy density than state‐of‐the‐art graphite‐based LIBs. However, challenges of volume expansion and related dynamic surfaces lead to continuous (re‐)formation of the solid electrolyte interphase, active lithium losses, and rapid capacity fading. Cell failure can be further accelerated when Si is paired with high‐capacity, but also rather reactive Ni‐rich cathodes, such as LiNi0.8Co0.1Mn0.1O2 (NCM‐811). Here, the practical applicability of thermal evaporation of Li metal is evaluated as a prelithiation technique on micrometer‐sized Si (µ‐Si) electrodes in addressing such challenges. NCM‐811 || “prelithiated µ‐Si” full‐cells (25% degree of prelithiation) can attain a higher initial discharge capacity of ≈192 mAh gNCM‐811−1 than the cells without prelithiation with only ≈160 mAh gNCM‐811−1. This study deeply discusses significant consequences of electrode capacity balancing (N:P ratio) with regard to prelithiation on the performance of full‐cells. The trade‐off between cell lifetime and energy density is also highlighted. It is essential to point out that the phenomena discussed here can further guide the direction of research in using the thermal evaporation of Li metal as a prelithiation technique toward its practical application on Si‐based LIBs.
A systematic evaluation of the practical applicability of the Li metal‐based thermal evaporation prelithiation technique on Si anodes is reported here. The practical relevance is examined in the LiNi0.8Co0.1Mn0.1O2 || μ‐Si full‐cell setup. The different electrode capacity balancing (N:P ratio) is deeply investigated and the trade‐off between cell lifetime and energy density with regard to the prelithiation is highlighted.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202203256</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; cell balancing ; Electrode materials ; Electrodes ; Electrolytic cells ; Evaporation ; Lithium ; Lithium-ion batteries ; Ni‐rich cathodes ; prelithiation ; Rechargeable batteries ; Silicon ; silicon anodes ; Solid electrolytes ; thermal evaporation</subject><ispartof>Advanced energy materials, 2023-01, Vol.13 (3), p.n/a</ispartof><rights>2022 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2876-f72003efb5a7e080a8a2db8ccfa9a4a734329a5e2fb461574a6d7c887ec16203</citedby><cites>FETCH-LOGICAL-c2876-f72003efb5a7e080a8a2db8ccfa9a4a734329a5e2fb461574a6d7c887ec16203</cites><orcidid>0000-0002-7637-1356 ; 0000-0001-7053-3986 ; 0000-0003-4176-5811 ; 0000-0002-2654-9355 ; 0000-0002-9741-2989 ; 0000-0002-2097-5193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202203256$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202203256$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Adhitama, Egy</creatorcontrib><creatorcontrib>Bela, Marlena M.</creatorcontrib><creatorcontrib>Demelash, Feleke</creatorcontrib><creatorcontrib>Stan, Marian C.</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Gomez‐Martin, Aurora</creatorcontrib><creatorcontrib>Placke, Tobias</creatorcontrib><title>On the Practical Applicability of the Li Metal‐Based Thermal Evaporation Prelithiation Technique on Si Anodes for Lithium Ion Batteries</title><title>Advanced energy materials</title><description>Lithium ion batteries (LIBs) using silicon as anode material are endowed with much higher energy density than state‐of‐the‐art graphite‐based LIBs. However, challenges of volume expansion and related dynamic surfaces lead to continuous (re‐)formation of the solid electrolyte interphase, active lithium losses, and rapid capacity fading. Cell failure can be further accelerated when Si is paired with high‐capacity, but also rather reactive Ni‐rich cathodes, such as LiNi0.8Co0.1Mn0.1O2 (NCM‐811). Here, the practical applicability of thermal evaporation of Li metal is evaluated as a prelithiation technique on micrometer‐sized Si (µ‐Si) electrodes in addressing such challenges. NCM‐811 || “prelithiated µ‐Si” full‐cells (25% degree of prelithiation) can attain a higher initial discharge capacity of ≈192 mAh gNCM‐811−1 than the cells without prelithiation with only ≈160 mAh gNCM‐811−1. This study deeply discusses significant consequences of electrode capacity balancing (N:P ratio) with regard to prelithiation on the performance of full‐cells. The trade‐off between cell lifetime and energy density is also highlighted. It is essential to point out that the phenomena discussed here can further guide the direction of research in using the thermal evaporation of Li metal as a prelithiation technique toward its practical application on Si‐based LIBs.
A systematic evaluation of the practical applicability of the Li metal‐based thermal evaporation prelithiation technique on Si anodes is reported here. The practical relevance is examined in the LiNi0.8Co0.1Mn0.1O2 || μ‐Si full‐cell setup. The different electrode capacity balancing (N:P ratio) is deeply investigated and the trade‐off between cell lifetime and energy density with regard to the prelithiation is highlighted.</description><subject>Anodes</subject><subject>cell balancing</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytic cells</subject><subject>Evaporation</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Ni‐rich cathodes</subject><subject>prelithiation</subject><subject>Rechargeable batteries</subject><subject>Silicon</subject><subject>silicon anodes</subject><subject>Solid electrolytes</subject><subject>thermal evaporation</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkDFPwzAQhSMEElXpymyJucV2HDsZ26pApZYi0T26OhfFVZoEOwV1Y2XjN_JLcAkqI7fcne57z9YLgmtGR4xSfgtY7Uacck5DHsmzoMckE0MZC3p-mkN-GQyc21JfImE0DHvBx6oibYHkyYJujYaSjJum9MPGlKY9kDr_OS8MWWIL5df75wQcZmRdoN15evYKTW2hNXXlPdBrCtNta9RFZV72SPzybMi4qjN0JK-td_PUfkfm_jKBtkVr0F0FFzmUDge_vR-s72br6cNwsbqfT8eLoeaxksNccUpDzDcRKKQxhRh4tom1ziEBASoUIU8gQp5vhGSREiAzpeNYoWbSp9MPbjrbxtb-c65Nt_XeVv7FlCupQpkIwTw16ihta-cs5mljzQ7sIWU0PQaeHgNPT4F7QdIJ3kyJh3_odDx7XP5pvwGj9YaB</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Adhitama, Egy</creator><creator>Bela, Marlena M.</creator><creator>Demelash, Feleke</creator><creator>Stan, Marian C.</creator><creator>Winter, Martin</creator><creator>Gomez‐Martin, Aurora</creator><creator>Placke, Tobias</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7637-1356</orcidid><orcidid>https://orcid.org/0000-0001-7053-3986</orcidid><orcidid>https://orcid.org/0000-0003-4176-5811</orcidid><orcidid>https://orcid.org/0000-0002-2654-9355</orcidid><orcidid>https://orcid.org/0000-0002-9741-2989</orcidid><orcidid>https://orcid.org/0000-0002-2097-5193</orcidid></search><sort><creationdate>20230101</creationdate><title>On the Practical Applicability of the Li Metal‐Based Thermal Evaporation Prelithiation Technique on Si Anodes for Lithium Ion Batteries</title><author>Adhitama, Egy ; Bela, Marlena M. ; Demelash, Feleke ; Stan, Marian C. ; Winter, Martin ; Gomez‐Martin, Aurora ; Placke, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2876-f72003efb5a7e080a8a2db8ccfa9a4a734329a5e2fb461574a6d7c887ec16203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodes</topic><topic>cell balancing</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytic cells</topic><topic>Evaporation</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Ni‐rich cathodes</topic><topic>prelithiation</topic><topic>Rechargeable batteries</topic><topic>Silicon</topic><topic>silicon anodes</topic><topic>Solid electrolytes</topic><topic>thermal evaporation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhitama, Egy</creatorcontrib><creatorcontrib>Bela, Marlena M.</creatorcontrib><creatorcontrib>Demelash, Feleke</creatorcontrib><creatorcontrib>Stan, Marian C.</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Gomez‐Martin, Aurora</creatorcontrib><creatorcontrib>Placke, Tobias</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adhitama, Egy</au><au>Bela, Marlena M.</au><au>Demelash, Feleke</au><au>Stan, Marian C.</au><au>Winter, Martin</au><au>Gomez‐Martin, Aurora</au><au>Placke, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Practical Applicability of the Li Metal‐Based Thermal Evaporation Prelithiation Technique on Si Anodes for Lithium Ion Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>13</volume><issue>3</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Lithium ion batteries (LIBs) using silicon as anode material are endowed with much higher energy density than state‐of‐the‐art graphite‐based LIBs. However, challenges of volume expansion and related dynamic surfaces lead to continuous (re‐)formation of the solid electrolyte interphase, active lithium losses, and rapid capacity fading. Cell failure can be further accelerated when Si is paired with high‐capacity, but also rather reactive Ni‐rich cathodes, such as LiNi0.8Co0.1Mn0.1O2 (NCM‐811). Here, the practical applicability of thermal evaporation of Li metal is evaluated as a prelithiation technique on micrometer‐sized Si (µ‐Si) electrodes in addressing such challenges. NCM‐811 || “prelithiated µ‐Si” full‐cells (25% degree of prelithiation) can attain a higher initial discharge capacity of ≈192 mAh gNCM‐811−1 than the cells without prelithiation with only ≈160 mAh gNCM‐811−1. This study deeply discusses significant consequences of electrode capacity balancing (N:P ratio) with regard to prelithiation on the performance of full‐cells. The trade‐off between cell lifetime and energy density is also highlighted. It is essential to point out that the phenomena discussed here can further guide the direction of research in using the thermal evaporation of Li metal as a prelithiation technique toward its practical application on Si‐based LIBs.
A systematic evaluation of the practical applicability of the Li metal‐based thermal evaporation prelithiation technique on Si anodes is reported here. The practical relevance is examined in the LiNi0.8Co0.1Mn0.1O2 || μ‐Si full‐cell setup. The different electrode capacity balancing (N:P ratio) is deeply investigated and the trade‐off between cell lifetime and energy density with regard to the prelithiation is highlighted.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202203256</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7637-1356</orcidid><orcidid>https://orcid.org/0000-0001-7053-3986</orcidid><orcidid>https://orcid.org/0000-0003-4176-5811</orcidid><orcidid>https://orcid.org/0000-0002-2654-9355</orcidid><orcidid>https://orcid.org/0000-0002-9741-2989</orcidid><orcidid>https://orcid.org/0000-0002-2097-5193</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2023-01, Vol.13 (3), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2767369441 |
source | Wiley Journals |
subjects | Anodes cell balancing Electrode materials Electrodes Electrolytic cells Evaporation Lithium Lithium-ion batteries Ni‐rich cathodes prelithiation Rechargeable batteries Silicon silicon anodes Solid electrolytes thermal evaporation |
title | On the Practical Applicability of the Li Metal‐Based Thermal Evaporation Prelithiation Technique on Si Anodes for Lithium Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Practical%20Applicability%20of%20the%20Li%20Metal%E2%80%90Based%20Thermal%20Evaporation%20Prelithiation%20Technique%20on%20Si%20Anodes%20for%20Lithium%20Ion%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Adhitama,%20Egy&rft.date=2023-01-01&rft.volume=13&rft.issue=3&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202203256&rft_dat=%3Cproquest_cross%3E2767369441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767369441&rft_id=info:pmid/&rfr_iscdi=true |