Artificial Visual Systems With Tunable Photoconductivity Based on Organic Molecule‐Nanowire Heterojunctions
The visual system, one of the most crucial units of the human perception system, combines the functions of multi‐wavelength signal detection and data processing. Herein, the large‐scale artificial synaptic device arrays based on the organic molecule‐nanowire heterojunctions with tunable photoconduct...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2023-01, Vol.33 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Xie, Pengshan Chen, Xu Zeng, Zixin Wang, Wei Meng, You Lai, Zhengxun Quan, Quan Li, Dengji Wang, Weijun Bu, Xiuming Tsang, Sai‐Wing Yip, SenPo Sun, Jia Ho, Johnny C. |
description | The visual system, one of the most crucial units of the human perception system, combines the functions of multi‐wavelength signal detection and data processing. Herein, the large‐scale artificial synaptic device arrays based on the organic molecule‐nanowire heterojunctions with tunable photoconductivity are proposed and demonstrated. The organic thin films of p‐type 2,7‐dioctyl[1]benzothieno[3,2‐b][1] benzothiophene (C8‐BTBT) or n‐type phenyl‐C61‐butyric acid methyl ester (PC61BM) are used to wrap the InGaAs nanowire parallel arrays to configure two different type‐I heterojunctions, respectively. Due to the difference in carrier injection, persistent negative photoconductivity (NPC) or positive photoconductivity (PPC) are achieved in these heterojunctions. The irradiation with different wavelengths (solar‐blind to visible ranges) can stimulate the heterojunction devices, effectively mimicking the synaptic behaviors with two different photoconductivities. The long‐term and multi‐state light memory are also realized through synergistic photoelectric modulation. Notably, the arrays with different photoconductivities are adopted to build the hardware kernel for the visual system. Due to the tunable photoconductivity and response to multiple wavelengths, the recognition rate of neural networks can reach 100% with lower complexity and power consumption. Evidently, these photosynaptic devices are illustrated with retina‐like behaviors and capabilities for large‐area integration, which reveals their promising potential for artificial visual systems.
The two different organic‐inorganic type‐I heterojunctions are fabricated with the InGaAs nanowire parallel arrays to realize the tunable persistent negative photoconductivity (NPC) or positive photoconductivity (PPC). The device arrays with multi‐wavelength NPC and PPC phenomena are adopted to build the hardware kernel for the visual system, which reaches a 100% recognition rate with lower complexity and power consumption. |
doi_str_mv | 10.1002/adfm.202209091 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2767369296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767369296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3171-eea2d2fb3638bd31bd5e7f182a2e6f9dc817d02982f52edd559f259017e059603</originalsourceid><addsrcrecordid>eNqFkL1OwzAURiMEEqWwMltiTrEd4sRjKZQitRSJ8rNFTnxNXSUx2A5VNh6BZ-RJSFVURqbvDt-5V_cEwSnBA4IxPRdSVQOKKcUcc7IX9AgjLIwwTfd3M3k5DI6cW2FMkiS66AXV0HqtdKFFiZ60a7p4aJ2HyqFn7Zdo0dQiLwHdL403hallU3j9oX2LLoUDiUyN5vZV1LpAM1NC0ZTw_fl1J2qz1hbQBDxYs2rqjjK1Ow4OlCgdnPxmP3gcXy9Gk3A6v7kdDadhEZGEhACCSqryiEVpLiOSyxgSRVIqKDDFZZGSRGLKU6piClLGMVc05t1PgGPOcNQPzrZ736x5b8D5bGUaW3cnM5qwJGKccta1BttWYY1zFlT2ZnUlbJsRnG2UZhul2U5pB_AtsNYltP-0s-HVePbH_gCUwH13</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767369296</pqid></control><display><type>article</type><title>Artificial Visual Systems With Tunable Photoconductivity Based on Organic Molecule‐Nanowire Heterojunctions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xie, Pengshan ; Chen, Xu ; Zeng, Zixin ; Wang, Wei ; Meng, You ; Lai, Zhengxun ; Quan, Quan ; Li, Dengji ; Wang, Weijun ; Bu, Xiuming ; Tsang, Sai‐Wing ; Yip, SenPo ; Sun, Jia ; Ho, Johnny C.</creator><creatorcontrib>Xie, Pengshan ; Chen, Xu ; Zeng, Zixin ; Wang, Wei ; Meng, You ; Lai, Zhengxun ; Quan, Quan ; Li, Dengji ; Wang, Weijun ; Bu, Xiuming ; Tsang, Sai‐Wing ; Yip, SenPo ; Sun, Jia ; Ho, Johnny C.</creatorcontrib><description>The visual system, one of the most crucial units of the human perception system, combines the functions of multi‐wavelength signal detection and data processing. Herein, the large‐scale artificial synaptic device arrays based on the organic molecule‐nanowire heterojunctions with tunable photoconductivity are proposed and demonstrated. The organic thin films of p‐type 2,7‐dioctyl[1]benzothieno[3,2‐b][1] benzothiophene (C8‐BTBT) or n‐type phenyl‐C61‐butyric acid methyl ester (PC61BM) are used to wrap the InGaAs nanowire parallel arrays to configure two different type‐I heterojunctions, respectively. Due to the difference in carrier injection, persistent negative photoconductivity (NPC) or positive photoconductivity (PPC) are achieved in these heterojunctions. The irradiation with different wavelengths (solar‐blind to visible ranges) can stimulate the heterojunction devices, effectively mimicking the synaptic behaviors with two different photoconductivities. The long‐term and multi‐state light memory are also realized through synergistic photoelectric modulation. Notably, the arrays with different photoconductivities are adopted to build the hardware kernel for the visual system. Due to the tunable photoconductivity and response to multiple wavelengths, the recognition rate of neural networks can reach 100% with lower complexity and power consumption. Evidently, these photosynaptic devices are illustrated with retina‐like behaviors and capabilities for large‐area integration, which reveals their promising potential for artificial visual systems.
The two different organic‐inorganic type‐I heterojunctions are fabricated with the InGaAs nanowire parallel arrays to realize the tunable persistent negative photoconductivity (NPC) or positive photoconductivity (PPC). The device arrays with multi‐wavelength NPC and PPC phenomena are adopted to build the hardware kernel for the visual system, which reaches a 100% recognition rate with lower complexity and power consumption.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202209091</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Arrays ; artificial visual systems ; Benzothiophene ; Butyric acid ; Carrier injection ; Data processing ; Heterojunction devices ; InGaAs ; Materials science ; Nanowires ; negative photoconductivity ; Neural networks ; Organic chemistry ; organic semiconductors ; Photoconductivity ; Photoelectricity ; Power consumption ; Signal detection ; Signal processing ; Thin films ; Wavelengths</subject><ispartof>Advanced functional materials, 2023-01, Vol.33 (4), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3171-eea2d2fb3638bd31bd5e7f182a2e6f9dc817d02982f52edd559f259017e059603</citedby><cites>FETCH-LOGICAL-c3171-eea2d2fb3638bd31bd5e7f182a2e6f9dc817d02982f52edd559f259017e059603</cites><orcidid>0000-0003-3000-8794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202209091$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202209091$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Xie, Pengshan</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Zeng, Zixin</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Meng, You</creatorcontrib><creatorcontrib>Lai, Zhengxun</creatorcontrib><creatorcontrib>Quan, Quan</creatorcontrib><creatorcontrib>Li, Dengji</creatorcontrib><creatorcontrib>Wang, Weijun</creatorcontrib><creatorcontrib>Bu, Xiuming</creatorcontrib><creatorcontrib>Tsang, Sai‐Wing</creatorcontrib><creatorcontrib>Yip, SenPo</creatorcontrib><creatorcontrib>Sun, Jia</creatorcontrib><creatorcontrib>Ho, Johnny C.</creatorcontrib><title>Artificial Visual Systems With Tunable Photoconductivity Based on Organic Molecule‐Nanowire Heterojunctions</title><title>Advanced functional materials</title><description>The visual system, one of the most crucial units of the human perception system, combines the functions of multi‐wavelength signal detection and data processing. Herein, the large‐scale artificial synaptic device arrays based on the organic molecule‐nanowire heterojunctions with tunable photoconductivity are proposed and demonstrated. The organic thin films of p‐type 2,7‐dioctyl[1]benzothieno[3,2‐b][1] benzothiophene (C8‐BTBT) or n‐type phenyl‐C61‐butyric acid methyl ester (PC61BM) are used to wrap the InGaAs nanowire parallel arrays to configure two different type‐I heterojunctions, respectively. Due to the difference in carrier injection, persistent negative photoconductivity (NPC) or positive photoconductivity (PPC) are achieved in these heterojunctions. The irradiation with different wavelengths (solar‐blind to visible ranges) can stimulate the heterojunction devices, effectively mimicking the synaptic behaviors with two different photoconductivities. The long‐term and multi‐state light memory are also realized through synergistic photoelectric modulation. Notably, the arrays with different photoconductivities are adopted to build the hardware kernel for the visual system. Due to the tunable photoconductivity and response to multiple wavelengths, the recognition rate of neural networks can reach 100% with lower complexity and power consumption. Evidently, these photosynaptic devices are illustrated with retina‐like behaviors and capabilities for large‐area integration, which reveals their promising potential for artificial visual systems.
The two different organic‐inorganic type‐I heterojunctions are fabricated with the InGaAs nanowire parallel arrays to realize the tunable persistent negative photoconductivity (NPC) or positive photoconductivity (PPC). The device arrays with multi‐wavelength NPC and PPC phenomena are adopted to build the hardware kernel for the visual system, which reaches a 100% recognition rate with lower complexity and power consumption.</description><subject>Arrays</subject><subject>artificial visual systems</subject><subject>Benzothiophene</subject><subject>Butyric acid</subject><subject>Carrier injection</subject><subject>Data processing</subject><subject>Heterojunction devices</subject><subject>InGaAs</subject><subject>Materials science</subject><subject>Nanowires</subject><subject>negative photoconductivity</subject><subject>Neural networks</subject><subject>Organic chemistry</subject><subject>organic semiconductors</subject><subject>Photoconductivity</subject><subject>Photoelectricity</subject><subject>Power consumption</subject><subject>Signal detection</subject><subject>Signal processing</subject><subject>Thin films</subject><subject>Wavelengths</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURiMEEqWwMltiTrEd4sRjKZQitRSJ8rNFTnxNXSUx2A5VNh6BZ-RJSFVURqbvDt-5V_cEwSnBA4IxPRdSVQOKKcUcc7IX9AgjLIwwTfd3M3k5DI6cW2FMkiS66AXV0HqtdKFFiZ60a7p4aJ2HyqFn7Zdo0dQiLwHdL403hallU3j9oX2LLoUDiUyN5vZV1LpAM1NC0ZTw_fl1J2qz1hbQBDxYs2rqjjK1Ow4OlCgdnPxmP3gcXy9Gk3A6v7kdDadhEZGEhACCSqryiEVpLiOSyxgSRVIqKDDFZZGSRGLKU6piClLGMVc05t1PgGPOcNQPzrZ736x5b8D5bGUaW3cnM5qwJGKccta1BttWYY1zFlT2ZnUlbJsRnG2UZhul2U5pB_AtsNYltP-0s-HVePbH_gCUwH13</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Xie, Pengshan</creator><creator>Chen, Xu</creator><creator>Zeng, Zixin</creator><creator>Wang, Wei</creator><creator>Meng, You</creator><creator>Lai, Zhengxun</creator><creator>Quan, Quan</creator><creator>Li, Dengji</creator><creator>Wang, Weijun</creator><creator>Bu, Xiuming</creator><creator>Tsang, Sai‐Wing</creator><creator>Yip, SenPo</creator><creator>Sun, Jia</creator><creator>Ho, Johnny C.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3000-8794</orcidid></search><sort><creationdate>20230101</creationdate><title>Artificial Visual Systems With Tunable Photoconductivity Based on Organic Molecule‐Nanowire Heterojunctions</title><author>Xie, Pengshan ; Chen, Xu ; Zeng, Zixin ; Wang, Wei ; Meng, You ; Lai, Zhengxun ; Quan, Quan ; Li, Dengji ; Wang, Weijun ; Bu, Xiuming ; Tsang, Sai‐Wing ; Yip, SenPo ; Sun, Jia ; Ho, Johnny C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3171-eea2d2fb3638bd31bd5e7f182a2e6f9dc817d02982f52edd559f259017e059603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arrays</topic><topic>artificial visual systems</topic><topic>Benzothiophene</topic><topic>Butyric acid</topic><topic>Carrier injection</topic><topic>Data processing</topic><topic>Heterojunction devices</topic><topic>InGaAs</topic><topic>Materials science</topic><topic>Nanowires</topic><topic>negative photoconductivity</topic><topic>Neural networks</topic><topic>Organic chemistry</topic><topic>organic semiconductors</topic><topic>Photoconductivity</topic><topic>Photoelectricity</topic><topic>Power consumption</topic><topic>Signal detection</topic><topic>Signal processing</topic><topic>Thin films</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Pengshan</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Zeng, Zixin</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Meng, You</creatorcontrib><creatorcontrib>Lai, Zhengxun</creatorcontrib><creatorcontrib>Quan, Quan</creatorcontrib><creatorcontrib>Li, Dengji</creatorcontrib><creatorcontrib>Wang, Weijun</creatorcontrib><creatorcontrib>Bu, Xiuming</creatorcontrib><creatorcontrib>Tsang, Sai‐Wing</creatorcontrib><creatorcontrib>Yip, SenPo</creatorcontrib><creatorcontrib>Sun, Jia</creatorcontrib><creatorcontrib>Ho, Johnny C.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Pengshan</au><au>Chen, Xu</au><au>Zeng, Zixin</au><au>Wang, Wei</au><au>Meng, You</au><au>Lai, Zhengxun</au><au>Quan, Quan</au><au>Li, Dengji</au><au>Wang, Weijun</au><au>Bu, Xiuming</au><au>Tsang, Sai‐Wing</au><au>Yip, SenPo</au><au>Sun, Jia</au><au>Ho, Johnny C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Visual Systems With Tunable Photoconductivity Based on Organic Molecule‐Nanowire Heterojunctions</atitle><jtitle>Advanced functional materials</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>33</volume><issue>4</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The visual system, one of the most crucial units of the human perception system, combines the functions of multi‐wavelength signal detection and data processing. Herein, the large‐scale artificial synaptic device arrays based on the organic molecule‐nanowire heterojunctions with tunable photoconductivity are proposed and demonstrated. The organic thin films of p‐type 2,7‐dioctyl[1]benzothieno[3,2‐b][1] benzothiophene (C8‐BTBT) or n‐type phenyl‐C61‐butyric acid methyl ester (PC61BM) are used to wrap the InGaAs nanowire parallel arrays to configure two different type‐I heterojunctions, respectively. Due to the difference in carrier injection, persistent negative photoconductivity (NPC) or positive photoconductivity (PPC) are achieved in these heterojunctions. The irradiation with different wavelengths (solar‐blind to visible ranges) can stimulate the heterojunction devices, effectively mimicking the synaptic behaviors with two different photoconductivities. The long‐term and multi‐state light memory are also realized through synergistic photoelectric modulation. Notably, the arrays with different photoconductivities are adopted to build the hardware kernel for the visual system. Due to the tunable photoconductivity and response to multiple wavelengths, the recognition rate of neural networks can reach 100% with lower complexity and power consumption. Evidently, these photosynaptic devices are illustrated with retina‐like behaviors and capabilities for large‐area integration, which reveals their promising potential for artificial visual systems.
The two different organic‐inorganic type‐I heterojunctions are fabricated with the InGaAs nanowire parallel arrays to realize the tunable persistent negative photoconductivity (NPC) or positive photoconductivity (PPC). The device arrays with multi‐wavelength NPC and PPC phenomena are adopted to build the hardware kernel for the visual system, which reaches a 100% recognition rate with lower complexity and power consumption.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202209091</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3000-8794</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-01, Vol.33 (4), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2767369296 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Arrays artificial visual systems Benzothiophene Butyric acid Carrier injection Data processing Heterojunction devices InGaAs Materials science Nanowires negative photoconductivity Neural networks Organic chemistry organic semiconductors Photoconductivity Photoelectricity Power consumption Signal detection Signal processing Thin films Wavelengths |
title | Artificial Visual Systems With Tunable Photoconductivity Based on Organic Molecule‐Nanowire Heterojunctions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A34%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Visual%20Systems%20With%20Tunable%20Photoconductivity%20Based%20on%20Organic%20Molecule%E2%80%90Nanowire%20Heterojunctions&rft.jtitle=Advanced%20functional%20materials&rft.au=Xie,%20Pengshan&rft.date=2023-01-01&rft.volume=33&rft.issue=4&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202209091&rft_dat=%3Cproquest_cross%3E2767369296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767369296&rft_id=info:pmid/&rfr_iscdi=true |