Bipartite graph capsule network

Graphs have been widely adopted in various fields, where many graph models are developed. Most of previous research focuses on unipartite or homogeneous graph analysis. In this graphs, the relationships between the same type of entities are preserved in the graphs. Meanwhile, the bipartite graphs th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World wide web (Bussum) 2023-01, Vol.26 (1), p.421-440
Hauptverfasser: Zhang, Xianhang, Wang, Hanchen, Yu, Jianke, Chen, Chen, Wang, Xiaoyang, Zhang, Wenjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 440
container_issue 1
container_start_page 421
container_title World wide web (Bussum)
container_volume 26
creator Zhang, Xianhang
Wang, Hanchen
Yu, Jianke
Chen, Chen
Wang, Xiaoyang
Zhang, Wenjie
description Graphs have been widely adopted in various fields, where many graph models are developed. Most of previous research focuses on unipartite or homogeneous graph analysis. In this graphs, the relationships between the same type of entities are preserved in the graphs. Meanwhile, the bipartite graphs that model the complex relationships among different entities with vertices partitioned into two disjoint sets, are becoming increasing popular and ubiquitous in many real life applications. Though several graph classification methods on unipartite and homogenous graphs have been proposed by using kernel method, graph neural network, etc. However, these methods are unable to effectively capture the hidden information in bipartite graphs. In this paper, we propose the first bipartite graph-based capsule network, namely Bipartite Capsule Graph Neural Network (BCGNN), for the bipartite graph classification task. BCGNN exploits the capsule network and obtains information between the same type vertices in the bipartite graphs by constructing the one-mode projection. Extensive experiments are conducted on real-world datasets to demonstrate the effectiveness of our proposed method.
doi_str_mv 10.1007/s11280-022-01009-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2767363458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767363458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e1357ed5c5c48453b48a85131374c2c76a9e92287ed5d5b7b65525b89014a87c3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwIsLnqOZTGaTPWrxHxS8KHgL2TStW-vummwRv72pK3jzNI_h996Dx9gpiAsQQl8mAGkEF1JykR8Vl3tsAqSRgwLczxpNmTW9HLKjlNZCiBIrmLCz66Z3cWiGUKyi618L7_q03YSiDcNnF9-O2cHSbVI4-b1T9nx78zS75_PHu4fZ1Zx7LHHgAZB0WJAnr4wirJVxhgABtfLS69JVoZLS7JgF1bouiSTVphKgnNEep-x8zO1j97ENabDrbhvbXGmlLnUuUWQyJUfKxy6lGJa2j827i18WhN0NYcchbB7C_gxhZTbhaEoZblch_kX_4_oGhD1d4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767363458</pqid></control><display><type>article</type><title>Bipartite graph capsule network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Xianhang ; Wang, Hanchen ; Yu, Jianke ; Chen, Chen ; Wang, Xiaoyang ; Zhang, Wenjie</creator><creatorcontrib>Zhang, Xianhang ; Wang, Hanchen ; Yu, Jianke ; Chen, Chen ; Wang, Xiaoyang ; Zhang, Wenjie</creatorcontrib><description>Graphs have been widely adopted in various fields, where many graph models are developed. Most of previous research focuses on unipartite or homogeneous graph analysis. In this graphs, the relationships between the same type of entities are preserved in the graphs. Meanwhile, the bipartite graphs that model the complex relationships among different entities with vertices partitioned into two disjoint sets, are becoming increasing popular and ubiquitous in many real life applications. Though several graph classification methods on unipartite and homogenous graphs have been proposed by using kernel method, graph neural network, etc. However, these methods are unable to effectively capture the hidden information in bipartite graphs. In this paper, we propose the first bipartite graph-based capsule network, namely Bipartite Capsule Graph Neural Network (BCGNN), for the bipartite graph classification task. BCGNN exploits the capsule network and obtains information between the same type vertices in the bipartite graphs by constructing the one-mode projection. Extensive experiments are conducted on real-world datasets to demonstrate the effectiveness of our proposed method.</description><identifier>ISSN: 1386-145X</identifier><identifier>EISSN: 1573-1413</identifier><identifier>DOI: 10.1007/s11280-022-01009-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Apexes ; Binary system ; Classification ; Computer Science ; Database Management ; Graph neural networks ; Graph theory ; Graphs ; Information Systems Applications (incl.Internet) ; Neural networks ; Operating Systems ; Special Issue on Decision Making in Heterogeneous Network Data Scenarios and Applications</subject><ispartof>World wide web (Bussum), 2023-01, Vol.26 (1), p.421-440</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e1357ed5c5c48453b48a85131374c2c76a9e92287ed5d5b7b65525b89014a87c3</citedby><cites>FETCH-LOGICAL-c363t-e1357ed5c5c48453b48a85131374c2c76a9e92287ed5d5b7b65525b89014a87c3</cites><orcidid>0000-0003-3158-9586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11280-022-01009-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11280-022-01009-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Xianhang</creatorcontrib><creatorcontrib>Wang, Hanchen</creatorcontrib><creatorcontrib>Yu, Jianke</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Wang, Xiaoyang</creatorcontrib><creatorcontrib>Zhang, Wenjie</creatorcontrib><title>Bipartite graph capsule network</title><title>World wide web (Bussum)</title><addtitle>World Wide Web</addtitle><description>Graphs have been widely adopted in various fields, where many graph models are developed. Most of previous research focuses on unipartite or homogeneous graph analysis. In this graphs, the relationships between the same type of entities are preserved in the graphs. Meanwhile, the bipartite graphs that model the complex relationships among different entities with vertices partitioned into two disjoint sets, are becoming increasing popular and ubiquitous in many real life applications. Though several graph classification methods on unipartite and homogenous graphs have been proposed by using kernel method, graph neural network, etc. However, these methods are unable to effectively capture the hidden information in bipartite graphs. In this paper, we propose the first bipartite graph-based capsule network, namely Bipartite Capsule Graph Neural Network (BCGNN), for the bipartite graph classification task. BCGNN exploits the capsule network and obtains information between the same type vertices in the bipartite graphs by constructing the one-mode projection. Extensive experiments are conducted on real-world datasets to demonstrate the effectiveness of our proposed method.</description><subject>Apexes</subject><subject>Binary system</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Database Management</subject><subject>Graph neural networks</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Neural networks</subject><subject>Operating Systems</subject><subject>Special Issue on Decision Making in Heterogeneous Network Data Scenarios and Applications</subject><issn>1386-145X</issn><issn>1573-1413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwIsLnqOZTGaTPWrxHxS8KHgL2TStW-vummwRv72pK3jzNI_h996Dx9gpiAsQQl8mAGkEF1JykR8Vl3tsAqSRgwLczxpNmTW9HLKjlNZCiBIrmLCz66Z3cWiGUKyi618L7_q03YSiDcNnF9-O2cHSbVI4-b1T9nx78zS75_PHu4fZ1Zx7LHHgAZB0WJAnr4wirJVxhgABtfLS69JVoZLS7JgF1bouiSTVphKgnNEep-x8zO1j97ENabDrbhvbXGmlLnUuUWQyJUfKxy6lGJa2j827i18WhN0NYcchbB7C_gxhZTbhaEoZblch_kX_4_oGhD1d4g</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhang, Xianhang</creator><creator>Wang, Hanchen</creator><creator>Yu, Jianke</creator><creator>Chen, Chen</creator><creator>Wang, Xiaoyang</creator><creator>Zhang, Wenjie</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3158-9586</orcidid></search><sort><creationdate>20230101</creationdate><title>Bipartite graph capsule network</title><author>Zhang, Xianhang ; Wang, Hanchen ; Yu, Jianke ; Chen, Chen ; Wang, Xiaoyang ; Zhang, Wenjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e1357ed5c5c48453b48a85131374c2c76a9e92287ed5d5b7b65525b89014a87c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apexes</topic><topic>Binary system</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Database Management</topic><topic>Graph neural networks</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Neural networks</topic><topic>Operating Systems</topic><topic>Special Issue on Decision Making in Heterogeneous Network Data Scenarios and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xianhang</creatorcontrib><creatorcontrib>Wang, Hanchen</creatorcontrib><creatorcontrib>Yu, Jianke</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Wang, Xiaoyang</creatorcontrib><creatorcontrib>Zhang, Wenjie</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>World wide web (Bussum)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xianhang</au><au>Wang, Hanchen</au><au>Yu, Jianke</au><au>Chen, Chen</au><au>Wang, Xiaoyang</au><au>Zhang, Wenjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bipartite graph capsule network</atitle><jtitle>World wide web (Bussum)</jtitle><stitle>World Wide Web</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>26</volume><issue>1</issue><spage>421</spage><epage>440</epage><pages>421-440</pages><issn>1386-145X</issn><eissn>1573-1413</eissn><abstract>Graphs have been widely adopted in various fields, where many graph models are developed. Most of previous research focuses on unipartite or homogeneous graph analysis. In this graphs, the relationships between the same type of entities are preserved in the graphs. Meanwhile, the bipartite graphs that model the complex relationships among different entities with vertices partitioned into two disjoint sets, are becoming increasing popular and ubiquitous in many real life applications. Though several graph classification methods on unipartite and homogenous graphs have been proposed by using kernel method, graph neural network, etc. However, these methods are unable to effectively capture the hidden information in bipartite graphs. In this paper, we propose the first bipartite graph-based capsule network, namely Bipartite Capsule Graph Neural Network (BCGNN), for the bipartite graph classification task. BCGNN exploits the capsule network and obtains information between the same type vertices in the bipartite graphs by constructing the one-mode projection. Extensive experiments are conducted on real-world datasets to demonstrate the effectiveness of our proposed method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11280-022-01009-2</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3158-9586</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1386-145X
ispartof World wide web (Bussum), 2023-01, Vol.26 (1), p.421-440
issn 1386-145X
1573-1413
language eng
recordid cdi_proquest_journals_2767363458
source SpringerLink Journals - AutoHoldings
subjects Apexes
Binary system
Classification
Computer Science
Database Management
Graph neural networks
Graph theory
Graphs
Information Systems Applications (incl.Internet)
Neural networks
Operating Systems
Special Issue on Decision Making in Heterogeneous Network Data Scenarios and Applications
title Bipartite graph capsule network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bipartite%20graph%20capsule%20network&rft.jtitle=World%20wide%20web%20(Bussum)&rft.au=Zhang,%20Xianhang&rft.date=2023-01-01&rft.volume=26&rft.issue=1&rft.spage=421&rft.epage=440&rft.pages=421-440&rft.issn=1386-145X&rft.eissn=1573-1413&rft_id=info:doi/10.1007/s11280-022-01009-2&rft_dat=%3Cproquest_cross%3E2767363458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767363458&rft_id=info:pmid/&rfr_iscdi=true