Deep Transfer Learning-Enabled Energy Management Strategy for Smart Home Sensor Networks
The applications of wireless sensor networks are extensively used to detect and control home residents' activities in smart homes. However, the sensors are battery-powered, so keeping them in active mode consumes tremendous energy. In this regard, we propose a solution to activate the smart hom...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2023-01, Vol.59 (1), p.81-92 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 92 |
---|---|
container_issue | 1 |
container_start_page | 81 |
container_title | IEEE transactions on industry applications |
container_volume | 59 |
creator | Alibrahim, Omar Padmanaban, Sanjeevikumar Khan, Murad Khattab, Omar Alothman, Basil Joumaa, Chibli |
description | The applications of wireless sensor networks are extensively used to detect and control home residents' activities in smart homes. However, the sensors are battery-powered, so keeping them in active mode consumes tremendous energy. In this regard, we propose a solution to activate the smart home sensors based on detecting the upcoming activities using a Deep Long-Short Term Memory (DLSTM) model. The pre-trained model is then transferred to the same and different Target Domains (TDs) to reduce the time for training. The proposed system applies to preprocess and feature mapping steps to both the source and target data to make grounds for efficient transfer. Further, applying the trained model to the TD may miss the essential activities. Therefore, a reinforcement learning model is applied in the TD. To handle unusual activities in real-time, guard sensors are appointed among the idle sensors. The performance evaluation shows that the proposed scheme detects the activities with an accuracy of 96.1%. Additionally, the proposed scheme outperforms the sentry and prediction-based schemes in energy consumption of the sensors and network lifetime. |
doi_str_mv | 10.1109/TIA.2022.3223347 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2767309709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9956770</ieee_id><sourcerecordid>2767309709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c174t-b7e815fd0c213e5bfdcf4ed17a1ce96773b068c94cc30b5b3c6904b98ea793473</originalsourceid><addsrcrecordid>eNo9kEFPAjEQhRujiYjeTbw08bw43Xa3zJEgCgnqAUy8Nd0yS0DoYrvE8O8tgXia5OW9mTcfY_cCekIAPs0ng14Oed6TeS6l0hesI1BihrLUl6wDgDJDRHXNbmJcAwhVCNVhX89EOz4P1seaAp-SDX7ll9nI22pDCz7yFJYH_ma9XdKWfMtnbbAtJa1uAp9tbWj5uNkSn5GPSXmn9rcJ3_GWXdV2E-nuPLvs82U0H46z6cfrZDiYZk5o1WaVpr4o6gW4XEgqqnrhakULoa1whKXWsoKy71A5J6EqKulKBFVhn6zG9KbsssfT3l1ofvYUW7Nu9sGnkybXpZaAOr3eZXByudDEGKg2u7BK3Q9GgDnyM4mfOfIzZ34p8nCKrIjo345YpFIg_wAsKGvl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767309709</pqid></control><display><type>article</type><title>Deep Transfer Learning-Enabled Energy Management Strategy for Smart Home Sensor Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Alibrahim, Omar ; Padmanaban, Sanjeevikumar ; Khan, Murad ; Khattab, Omar ; Alothman, Basil ; Joumaa, Chibli</creator><creatorcontrib>Alibrahim, Omar ; Padmanaban, Sanjeevikumar ; Khan, Murad ; Khattab, Omar ; Alothman, Basil ; Joumaa, Chibli</creatorcontrib><description>The applications of wireless sensor networks are extensively used to detect and control home residents' activities in smart homes. However, the sensors are battery-powered, so keeping them in active mode consumes tremendous energy. In this regard, we propose a solution to activate the smart home sensors based on detecting the upcoming activities using a Deep Long-Short Term Memory (DLSTM) model. The pre-trained model is then transferred to the same and different Target Domains (TDs) to reduce the time for training. The proposed system applies to preprocess and feature mapping steps to both the source and target data to make grounds for efficient transfer. Further, applying the trained model to the TD may miss the essential activities. Therefore, a reinforcement learning model is applied in the TD. To handle unusual activities in real-time, guard sensors are appointed among the idle sensors. The performance evaluation shows that the proposed scheme detects the activities with an accuracy of 96.1%. Additionally, the proposed scheme outperforms the sentry and prediction-based schemes in energy consumption of the sensors and network lifetime.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2022.3223347</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activity recognition ; Energy consumption ; Energy management ; Hidden Markov models ; internet of things ; LSTM ; Machine learning ; Performance evaluation ; Predictive models ; Sensors ; Smart buildings ; Smart homes ; Smart sensors ; Transfer learning ; Wireless networks ; Wireless sensor networks</subject><ispartof>IEEE transactions on industry applications, 2023-01, Vol.59 (1), p.81-92</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c174t-b7e815fd0c213e5bfdcf4ed17a1ce96773b068c94cc30b5b3c6904b98ea793473</cites><orcidid>0000-0003-3212-2750 ; 0000-0001-9905-8904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9956770$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9956770$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alibrahim, Omar</creatorcontrib><creatorcontrib>Padmanaban, Sanjeevikumar</creatorcontrib><creatorcontrib>Khan, Murad</creatorcontrib><creatorcontrib>Khattab, Omar</creatorcontrib><creatorcontrib>Alothman, Basil</creatorcontrib><creatorcontrib>Joumaa, Chibli</creatorcontrib><title>Deep Transfer Learning-Enabled Energy Management Strategy for Smart Home Sensor Networks</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>The applications of wireless sensor networks are extensively used to detect and control home residents' activities in smart homes. However, the sensors are battery-powered, so keeping them in active mode consumes tremendous energy. In this regard, we propose a solution to activate the smart home sensors based on detecting the upcoming activities using a Deep Long-Short Term Memory (DLSTM) model. The pre-trained model is then transferred to the same and different Target Domains (TDs) to reduce the time for training. The proposed system applies to preprocess and feature mapping steps to both the source and target data to make grounds for efficient transfer. Further, applying the trained model to the TD may miss the essential activities. Therefore, a reinforcement learning model is applied in the TD. To handle unusual activities in real-time, guard sensors are appointed among the idle sensors. The performance evaluation shows that the proposed scheme detects the activities with an accuracy of 96.1%. Additionally, the proposed scheme outperforms the sentry and prediction-based schemes in energy consumption of the sensors and network lifetime.</description><subject>Activity recognition</subject><subject>Energy consumption</subject><subject>Energy management</subject><subject>Hidden Markov models</subject><subject>internet of things</subject><subject>LSTM</subject><subject>Machine learning</subject><subject>Performance evaluation</subject><subject>Predictive models</subject><subject>Sensors</subject><subject>Smart buildings</subject><subject>Smart homes</subject><subject>Smart sensors</subject><subject>Transfer learning</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPAjEQhRujiYjeTbw08bw43Xa3zJEgCgnqAUy8Nd0yS0DoYrvE8O8tgXia5OW9mTcfY_cCekIAPs0ng14Oed6TeS6l0hesI1BihrLUl6wDgDJDRHXNbmJcAwhVCNVhX89EOz4P1seaAp-SDX7ll9nI22pDCz7yFJYH_ma9XdKWfMtnbbAtJa1uAp9tbWj5uNkSn5GPSXmn9rcJ3_GWXdV2E-nuPLvs82U0H46z6cfrZDiYZk5o1WaVpr4o6gW4XEgqqnrhakULoa1whKXWsoKy71A5J6EqKulKBFVhn6zG9KbsssfT3l1ofvYUW7Nu9sGnkybXpZaAOr3eZXByudDEGKg2u7BK3Q9GgDnyM4mfOfIzZ34p8nCKrIjo345YpFIg_wAsKGvl</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Alibrahim, Omar</creator><creator>Padmanaban, Sanjeevikumar</creator><creator>Khan, Murad</creator><creator>Khattab, Omar</creator><creator>Alothman, Basil</creator><creator>Joumaa, Chibli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3212-2750</orcidid><orcidid>https://orcid.org/0000-0001-9905-8904</orcidid></search><sort><creationdate>202301</creationdate><title>Deep Transfer Learning-Enabled Energy Management Strategy for Smart Home Sensor Networks</title><author>Alibrahim, Omar ; Padmanaban, Sanjeevikumar ; Khan, Murad ; Khattab, Omar ; Alothman, Basil ; Joumaa, Chibli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c174t-b7e815fd0c213e5bfdcf4ed17a1ce96773b068c94cc30b5b3c6904b98ea793473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activity recognition</topic><topic>Energy consumption</topic><topic>Energy management</topic><topic>Hidden Markov models</topic><topic>internet of things</topic><topic>LSTM</topic><topic>Machine learning</topic><topic>Performance evaluation</topic><topic>Predictive models</topic><topic>Sensors</topic><topic>Smart buildings</topic><topic>Smart homes</topic><topic>Smart sensors</topic><topic>Transfer learning</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alibrahim, Omar</creatorcontrib><creatorcontrib>Padmanaban, Sanjeevikumar</creatorcontrib><creatorcontrib>Khan, Murad</creatorcontrib><creatorcontrib>Khattab, Omar</creatorcontrib><creatorcontrib>Alothman, Basil</creatorcontrib><creatorcontrib>Joumaa, Chibli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alibrahim, Omar</au><au>Padmanaban, Sanjeevikumar</au><au>Khan, Murad</au><au>Khattab, Omar</au><au>Alothman, Basil</au><au>Joumaa, Chibli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Transfer Learning-Enabled Energy Management Strategy for Smart Home Sensor Networks</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2023-01</date><risdate>2023</risdate><volume>59</volume><issue>1</issue><spage>81</spage><epage>92</epage><pages>81-92</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>The applications of wireless sensor networks are extensively used to detect and control home residents' activities in smart homes. However, the sensors are battery-powered, so keeping them in active mode consumes tremendous energy. In this regard, we propose a solution to activate the smart home sensors based on detecting the upcoming activities using a Deep Long-Short Term Memory (DLSTM) model. The pre-trained model is then transferred to the same and different Target Domains (TDs) to reduce the time for training. The proposed system applies to preprocess and feature mapping steps to both the source and target data to make grounds for efficient transfer. Further, applying the trained model to the TD may miss the essential activities. Therefore, a reinforcement learning model is applied in the TD. To handle unusual activities in real-time, guard sensors are appointed among the idle sensors. The performance evaluation shows that the proposed scheme detects the activities with an accuracy of 96.1%. Additionally, the proposed scheme outperforms the sentry and prediction-based schemes in energy consumption of the sensors and network lifetime.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2022.3223347</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3212-2750</orcidid><orcidid>https://orcid.org/0000-0001-9905-8904</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2023-01, Vol.59 (1), p.81-92 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_proquest_journals_2767309709 |
source | IEEE Electronic Library (IEL) |
subjects | Activity recognition Energy consumption Energy management Hidden Markov models internet of things LSTM Machine learning Performance evaluation Predictive models Sensors Smart buildings Smart homes Smart sensors Transfer learning Wireless networks Wireless sensor networks |
title | Deep Transfer Learning-Enabled Energy Management Strategy for Smart Home Sensor Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Transfer%20Learning-Enabled%20Energy%20Management%20Strategy%20for%20Smart%20Home%20Sensor%20Networks&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Alibrahim,%20Omar&rft.date=2023-01&rft.volume=59&rft.issue=1&rft.spage=81&rft.epage=92&rft.pages=81-92&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2022.3223347&rft_dat=%3Cproquest_RIE%3E2767309709%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767309709&rft_id=info:pmid/&rft_ieee_id=9956770&rfr_iscdi=true |