A Lagrangian approach to ex-vessel corium spreading over ceramic and concrete substrates using moving particle hydrodynamics

•Highly melt spreading is analyzed with the moving particle hydrodynamics (MPH).•No-slip/slip boundary conditions are developed for reproducing the spreading behavior under active ceramics and concrete substrates.•VULCANO VE-U9 spreading experiment is utilized for the validation of MPH.•Crawling and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and design 2022-12, Vol.399, p.112029, Article 112029
Hauptverfasser: Yokoyama, Ryo, Kondo, Masahiro, Suzuki, Shunichi, Johnson, Michael, Miwa, Shuichiro, Pellegrini, Marco, Denoix, Arthur, Bouyer, Viviane, Journeau, Christophe, Okamoto, Koji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112029
container_title Nuclear engineering and design
container_volume 399
creator Yokoyama, Ryo
Kondo, Masahiro
Suzuki, Shunichi
Johnson, Michael
Miwa, Shuichiro
Pellegrini, Marco
Denoix, Arthur
Bouyer, Viviane
Journeau, Christophe
Okamoto, Koji
description •Highly melt spreading is analyzed with the moving particle hydrodynamics (MPH).•No-slip/slip boundary conditions are developed for reproducing the spreading behavior under active ceramics and concrete substrates.•VULCANO VE-U9 spreading experiment is utilized for the validation of MPH.•Crawling and gliding spreading motions are observed under ceramics and concrete, respectively. Understanding the spreading of molten core materials (corium) is vital for achieving post-accident heat removal and maintaining the integrity of the reactor containment during a severe nuclear accident. The spreading of highly viscous corium over sacrificial concrete and ablation-resistant ceramic substrates, consistent with recent VE-U9 experiments at the VULCANO facility, is investigated using a Lagrangian moving particle hydrodynamics (MPH) method. The spreading dynamics are coupled with a heat transfer model to account for the increase in melt viscosity due to solidification. Three alternative boundary conditions are considered at the melt-substrate interface to mimic the influence of low viscosity concrete ablation products on the spreading dynamics. Simulation of spreading under no-slip conditions closely resembled the spreading behavior observed over the inert ceramic substrate, advancing with a crawling motion with a steep profile in the proximity of the melt front. Spreading terminated due to a combination of thermal radiation from the free surface and the heat transfer to the substrate, leading to the formation of a continuous crust. Introduction of slip boundary models, to mimic lubrication of the interface by a film of low-viscosity concrete decomposition products, enabled the prediction of the gliding flow observed over the sacrificial concrete substrate, characterized by a shallow melt topology near the spreading front. The simulation results demonstrate excellent potential for Lagrangian models such as MPH to predict complex spreading dynamics in the presence of both melt solidification and lubrication at the substrate.
doi_str_mv 10.1016/j.nucengdes.2022.112029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2767238825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029549322003806</els_id><sourcerecordid>2767238825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-b9cf66b31f3a1a899e682a42f5665f872b47252f0a93398f776d1a60395973823</originalsourceid><addsrcrecordid>eNqFkEFrGzEQhUVJoE6a3xBBz-uuJK-0OpqQpAVDLy30JsbaWUfGlrajXRNDfny0OPTauTwYvjfDe4zdi3opaqG_7Zdx8hh3HealrKVcClHEfmIL0RpZmcb-uWKLuqyqZmXVZ3aT876ex8oFe1vzDewI4i5A5DAMlMC_8DFxfK1OmDMeuE8UpiPPAyF0Ie54OiFxjwTH4DnErhDRE47I87TNI8GImU95Ro_pNMsANAZ_QP5y7ih15zhb8xd23cMh492H3rLfT4-_Hr5Xm5_PPx7Wm8qvmnasttb3Wm-V6BUIaK1F3UpYyb7RuulLyO3KyEb2NVilbNsbozsBula2sUa1Ut2yr5e7Jd3fCfPo9mmiWF46abSRqm1lUyhzoTylnAl7N1A4Ap2dqN1ctdu7f1W7uWp3qbo41xcnlhCngOSyDxg9doHQj65L4b833gHpzo1l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767238825</pqid></control><display><type>article</type><title>A Lagrangian approach to ex-vessel corium spreading over ceramic and concrete substrates using moving particle hydrodynamics</title><source>Elsevier ScienceDirect Journals</source><creator>Yokoyama, Ryo ; Kondo, Masahiro ; Suzuki, Shunichi ; Johnson, Michael ; Miwa, Shuichiro ; Pellegrini, Marco ; Denoix, Arthur ; Bouyer, Viviane ; Journeau, Christophe ; Okamoto, Koji</creator><creatorcontrib>Yokoyama, Ryo ; Kondo, Masahiro ; Suzuki, Shunichi ; Johnson, Michael ; Miwa, Shuichiro ; Pellegrini, Marco ; Denoix, Arthur ; Bouyer, Viviane ; Journeau, Christophe ; Okamoto, Koji</creatorcontrib><description>•Highly melt spreading is analyzed with the moving particle hydrodynamics (MPH).•No-slip/slip boundary conditions are developed for reproducing the spreading behavior under active ceramics and concrete substrates.•VULCANO VE-U9 spreading experiment is utilized for the validation of MPH.•Crawling and gliding spreading motions are observed under ceramics and concrete, respectively. Understanding the spreading of molten core materials (corium) is vital for achieving post-accident heat removal and maintaining the integrity of the reactor containment during a severe nuclear accident. The spreading of highly viscous corium over sacrificial concrete and ablation-resistant ceramic substrates, consistent with recent VE-U9 experiments at the VULCANO facility, is investigated using a Lagrangian moving particle hydrodynamics (MPH) method. The spreading dynamics are coupled with a heat transfer model to account for the increase in melt viscosity due to solidification. Three alternative boundary conditions are considered at the melt-substrate interface to mimic the influence of low viscosity concrete ablation products on the spreading dynamics. Simulation of spreading under no-slip conditions closely resembled the spreading behavior observed over the inert ceramic substrate, advancing with a crawling motion with a steep profile in the proximity of the melt front. Spreading terminated due to a combination of thermal radiation from the free surface and the heat transfer to the substrate, leading to the formation of a continuous crust. Introduction of slip boundary models, to mimic lubrication of the interface by a film of low-viscosity concrete decomposition products, enabled the prediction of the gliding flow observed over the sacrificial concrete substrate, characterized by a shallow melt topology near the spreading front. The simulation results demonstrate excellent potential for Lagrangian models such as MPH to predict complex spreading dynamics in the presence of both melt solidification and lubrication at the substrate.</description><identifier>ISSN: 0029-5493</identifier><identifier>EISSN: 1872-759X</identifier><identifier>DOI: 10.1016/j.nucengdes.2022.112029</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Ablation ; Boundary conditions ; Ceramics ; Corium spreading ; Fluid mechanics ; Free surfaces ; Gliding ; Heat transfer ; Hydrodynamics ; Lubrication ; Nuclear accidents ; Nuclear accidents &amp; safety ; Particle method ; Severe accident ; Simulation ; Slip boundary ; Solidification ; Spreading ; Substrates ; Thermal radiation ; Topology ; Viscosity ; Viscous fluid</subject><ispartof>Nuclear engineering and design, 2022-12, Vol.399, p.112029, Article 112029</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-b9cf66b31f3a1a899e682a42f5665f872b47252f0a93398f776d1a60395973823</citedby><cites>FETCH-LOGICAL-c458t-b9cf66b31f3a1a899e682a42f5665f872b47252f0a93398f776d1a60395973823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0029549322003806$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yokoyama, Ryo</creatorcontrib><creatorcontrib>Kondo, Masahiro</creatorcontrib><creatorcontrib>Suzuki, Shunichi</creatorcontrib><creatorcontrib>Johnson, Michael</creatorcontrib><creatorcontrib>Miwa, Shuichiro</creatorcontrib><creatorcontrib>Pellegrini, Marco</creatorcontrib><creatorcontrib>Denoix, Arthur</creatorcontrib><creatorcontrib>Bouyer, Viviane</creatorcontrib><creatorcontrib>Journeau, Christophe</creatorcontrib><creatorcontrib>Okamoto, Koji</creatorcontrib><title>A Lagrangian approach to ex-vessel corium spreading over ceramic and concrete substrates using moving particle hydrodynamics</title><title>Nuclear engineering and design</title><description>•Highly melt spreading is analyzed with the moving particle hydrodynamics (MPH).•No-slip/slip boundary conditions are developed for reproducing the spreading behavior under active ceramics and concrete substrates.•VULCANO VE-U9 spreading experiment is utilized for the validation of MPH.•Crawling and gliding spreading motions are observed under ceramics and concrete, respectively. Understanding the spreading of molten core materials (corium) is vital for achieving post-accident heat removal and maintaining the integrity of the reactor containment during a severe nuclear accident. The spreading of highly viscous corium over sacrificial concrete and ablation-resistant ceramic substrates, consistent with recent VE-U9 experiments at the VULCANO facility, is investigated using a Lagrangian moving particle hydrodynamics (MPH) method. The spreading dynamics are coupled with a heat transfer model to account for the increase in melt viscosity due to solidification. Three alternative boundary conditions are considered at the melt-substrate interface to mimic the influence of low viscosity concrete ablation products on the spreading dynamics. Simulation of spreading under no-slip conditions closely resembled the spreading behavior observed over the inert ceramic substrate, advancing with a crawling motion with a steep profile in the proximity of the melt front. Spreading terminated due to a combination of thermal radiation from the free surface and the heat transfer to the substrate, leading to the formation of a continuous crust. Introduction of slip boundary models, to mimic lubrication of the interface by a film of low-viscosity concrete decomposition products, enabled the prediction of the gliding flow observed over the sacrificial concrete substrate, characterized by a shallow melt topology near the spreading front. The simulation results demonstrate excellent potential for Lagrangian models such as MPH to predict complex spreading dynamics in the presence of both melt solidification and lubrication at the substrate.</description><subject>Ablation</subject><subject>Boundary conditions</subject><subject>Ceramics</subject><subject>Corium spreading</subject><subject>Fluid mechanics</subject><subject>Free surfaces</subject><subject>Gliding</subject><subject>Heat transfer</subject><subject>Hydrodynamics</subject><subject>Lubrication</subject><subject>Nuclear accidents</subject><subject>Nuclear accidents &amp; safety</subject><subject>Particle method</subject><subject>Severe accident</subject><subject>Simulation</subject><subject>Slip boundary</subject><subject>Solidification</subject><subject>Spreading</subject><subject>Substrates</subject><subject>Thermal radiation</subject><subject>Topology</subject><subject>Viscosity</subject><subject>Viscous fluid</subject><issn>0029-5493</issn><issn>1872-759X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEFrGzEQhUVJoE6a3xBBz-uuJK-0OpqQpAVDLy30JsbaWUfGlrajXRNDfny0OPTauTwYvjfDe4zdi3opaqG_7Zdx8hh3HealrKVcClHEfmIL0RpZmcb-uWKLuqyqZmXVZ3aT876ex8oFe1vzDewI4i5A5DAMlMC_8DFxfK1OmDMeuE8UpiPPAyF0Ie54OiFxjwTH4DnErhDRE47I87TNI8GImU95Ro_pNMsANAZ_QP5y7ih15zhb8xd23cMh492H3rLfT4-_Hr5Xm5_PPx7Wm8qvmnasttb3Wm-V6BUIaK1F3UpYyb7RuulLyO3KyEb2NVilbNsbozsBula2sUa1Ut2yr5e7Jd3fCfPo9mmiWF46abSRqm1lUyhzoTylnAl7N1A4Ap2dqN1ctdu7f1W7uWp3qbo41xcnlhCngOSyDxg9doHQj65L4b833gHpzo1l</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Yokoyama, Ryo</creator><creator>Kondo, Masahiro</creator><creator>Suzuki, Shunichi</creator><creator>Johnson, Michael</creator><creator>Miwa, Shuichiro</creator><creator>Pellegrini, Marco</creator><creator>Denoix, Arthur</creator><creator>Bouyer, Viviane</creator><creator>Journeau, Christophe</creator><creator>Okamoto, Koji</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20221201</creationdate><title>A Lagrangian approach to ex-vessel corium spreading over ceramic and concrete substrates using moving particle hydrodynamics</title><author>Yokoyama, Ryo ; Kondo, Masahiro ; Suzuki, Shunichi ; Johnson, Michael ; Miwa, Shuichiro ; Pellegrini, Marco ; Denoix, Arthur ; Bouyer, Viviane ; Journeau, Christophe ; Okamoto, Koji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-b9cf66b31f3a1a899e682a42f5665f872b47252f0a93398f776d1a60395973823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Boundary conditions</topic><topic>Ceramics</topic><topic>Corium spreading</topic><topic>Fluid mechanics</topic><topic>Free surfaces</topic><topic>Gliding</topic><topic>Heat transfer</topic><topic>Hydrodynamics</topic><topic>Lubrication</topic><topic>Nuclear accidents</topic><topic>Nuclear accidents &amp; safety</topic><topic>Particle method</topic><topic>Severe accident</topic><topic>Simulation</topic><topic>Slip boundary</topic><topic>Solidification</topic><topic>Spreading</topic><topic>Substrates</topic><topic>Thermal radiation</topic><topic>Topology</topic><topic>Viscosity</topic><topic>Viscous fluid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yokoyama, Ryo</creatorcontrib><creatorcontrib>Kondo, Masahiro</creatorcontrib><creatorcontrib>Suzuki, Shunichi</creatorcontrib><creatorcontrib>Johnson, Michael</creatorcontrib><creatorcontrib>Miwa, Shuichiro</creatorcontrib><creatorcontrib>Pellegrini, Marco</creatorcontrib><creatorcontrib>Denoix, Arthur</creatorcontrib><creatorcontrib>Bouyer, Viviane</creatorcontrib><creatorcontrib>Journeau, Christophe</creatorcontrib><creatorcontrib>Okamoto, Koji</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Nuclear engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yokoyama, Ryo</au><au>Kondo, Masahiro</au><au>Suzuki, Shunichi</au><au>Johnson, Michael</au><au>Miwa, Shuichiro</au><au>Pellegrini, Marco</au><au>Denoix, Arthur</au><au>Bouyer, Viviane</au><au>Journeau, Christophe</au><au>Okamoto, Koji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lagrangian approach to ex-vessel corium spreading over ceramic and concrete substrates using moving particle hydrodynamics</atitle><jtitle>Nuclear engineering and design</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>399</volume><spage>112029</spage><pages>112029-</pages><artnum>112029</artnum><issn>0029-5493</issn><eissn>1872-759X</eissn><abstract>•Highly melt spreading is analyzed with the moving particle hydrodynamics (MPH).•No-slip/slip boundary conditions are developed for reproducing the spreading behavior under active ceramics and concrete substrates.•VULCANO VE-U9 spreading experiment is utilized for the validation of MPH.•Crawling and gliding spreading motions are observed under ceramics and concrete, respectively. Understanding the spreading of molten core materials (corium) is vital for achieving post-accident heat removal and maintaining the integrity of the reactor containment during a severe nuclear accident. The spreading of highly viscous corium over sacrificial concrete and ablation-resistant ceramic substrates, consistent with recent VE-U9 experiments at the VULCANO facility, is investigated using a Lagrangian moving particle hydrodynamics (MPH) method. The spreading dynamics are coupled with a heat transfer model to account for the increase in melt viscosity due to solidification. Three alternative boundary conditions are considered at the melt-substrate interface to mimic the influence of low viscosity concrete ablation products on the spreading dynamics. Simulation of spreading under no-slip conditions closely resembled the spreading behavior observed over the inert ceramic substrate, advancing with a crawling motion with a steep profile in the proximity of the melt front. Spreading terminated due to a combination of thermal radiation from the free surface and the heat transfer to the substrate, leading to the formation of a continuous crust. Introduction of slip boundary models, to mimic lubrication of the interface by a film of low-viscosity concrete decomposition products, enabled the prediction of the gliding flow observed over the sacrificial concrete substrate, characterized by a shallow melt topology near the spreading front. The simulation results demonstrate excellent potential for Lagrangian models such as MPH to predict complex spreading dynamics in the presence of both melt solidification and lubrication at the substrate.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nucengdes.2022.112029</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5493
ispartof Nuclear engineering and design, 2022-12, Vol.399, p.112029, Article 112029
issn 0029-5493
1872-759X
language eng
recordid cdi_proquest_journals_2767238825
source Elsevier ScienceDirect Journals
subjects Ablation
Boundary conditions
Ceramics
Corium spreading
Fluid mechanics
Free surfaces
Gliding
Heat transfer
Hydrodynamics
Lubrication
Nuclear accidents
Nuclear accidents & safety
Particle method
Severe accident
Simulation
Slip boundary
Solidification
Spreading
Substrates
Thermal radiation
Topology
Viscosity
Viscous fluid
title A Lagrangian approach to ex-vessel corium spreading over ceramic and concrete substrates using moving particle hydrodynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lagrangian%20approach%20to%20ex-vessel%20corium%20spreading%20over%20ceramic%20and%20concrete%20substrates%20using%20moving%20particle%20hydrodynamics&rft.jtitle=Nuclear%20engineering%20and%20design&rft.au=Yokoyama,%20Ryo&rft.date=2022-12-01&rft.volume=399&rft.spage=112029&rft.pages=112029-&rft.artnum=112029&rft.issn=0029-5493&rft.eissn=1872-759X&rft_id=info:doi/10.1016/j.nucengdes.2022.112029&rft_dat=%3Cproquest_cross%3E2767238825%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767238825&rft_id=info:pmid/&rft_els_id=S0029549322003806&rfr_iscdi=true