Modeling and Mapping of Forest Fire Occurrence in the Lower Silesian Voivodeship of Poland Based on Machine Learning Methods

In recent years, forest fires have become an important issue in Central Europe. To model the probability of the occurrence of forest fires in the Lower Silesian Voivodeship of Poland, historical fire data and several types of predictors were collected or generated, including topographic, vegetation,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forests 2023-01, Vol.14 (1), p.46
Hauptverfasser: Milanović, Slobodan, Kaczmarowski, Jan, Ciesielski, Mariusz, Trailović, Zoran, Mielcarek, Miłosz, Szczygieł, Ryszard, Kwiatkowski, Mirosław, Bałazy, Radomir, Zasada, Michał, Milanović, Sladjan D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 46
container_title Forests
container_volume 14
creator Milanović, Slobodan
Kaczmarowski, Jan
Ciesielski, Mariusz
Trailović, Zoran
Mielcarek, Miłosz
Szczygieł, Ryszard
Kwiatkowski, Mirosław
Bałazy, Radomir
Zasada, Michał
Milanović, Sladjan D.
description In recent years, forest fires have become an important issue in Central Europe. To model the probability of the occurrence of forest fires in the Lower Silesian Voivodeship of Poland, historical fire data and several types of predictors were collected or generated, including topographic, vegetation, climatic, and anthropogenic features. The main objectives of this study were to determine the importance of the predictors of forest fire occurrence and to map the probability of forest fire occurrence. The H2O driverless artificial intelligence (DAI) cloud platform was used to model forest fire probability. The gradient boosted machine (GBM) and random forest (RF) methods were applied to assess the probability of forest fire occurrence. Evaluation the importance of the variables was performed using the H2O platform permutation method. The most important variables were the presence of coniferous forest and the distance to agricultural land according to the GBM and RF methods, respectively. Model validation was conducted using receiver operating characteristic (ROC) analysis. The areas under the curve (AUCs) of the ROC plots from the GBM and RF models were 83.3% and 81.3%, respectively. Based on the results obtained, the GBM model can be recommended for the mapping of forest fire occurrence in the study area.
doi_str_mv 10.3390/f14010046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2767208450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767208450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-9b28de24333c7ce7d68ebe6eb6154d7acc710f66a52755e43e028d6d5bd0ffcf3</originalsourceid><addsrcrecordid>eNpNkE9LxDAQxYsouKx78BsEPHmopkmbNEddXBV2WcE_15ImE5tlTWrSVQQ_vCkr4lzmHd77DfOy7LTAF5QKfGmKEhcYl-wgmxRCiLwUmB_-08fZLMYNTlPxWpBykn2vvIatda9IOo1Wsu9H7Q1a-ABxQAsbAK2V2oUATgGyDg0doKX_hIAe7RailQ69ePuROLGz_Zh98NuRdi0jaORdwqrOupQCGdzIX8HQeR1PsiMjtxFmv3uaPS9unuZ3-XJ9ez-_WuaKCDLkoiW1BlJSShVXwDWroQUGLSuqUnOpFC-wYUxWhFcVlBRwCjBdtRobowydZmd7bh_8-y691Wz8Lrh0siGccYLrssLJdb53qeBjDGCaPtg3Gb6aAjdjv81fv_QHabltYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767208450</pqid></control><display><type>article</type><title>Modeling and Mapping of Forest Fire Occurrence in the Lower Silesian Voivodeship of Poland Based on Machine Learning Methods</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Milanović, Slobodan ; Kaczmarowski, Jan ; Ciesielski, Mariusz ; Trailović, Zoran ; Mielcarek, Miłosz ; Szczygieł, Ryszard ; Kwiatkowski, Mirosław ; Bałazy, Radomir ; Zasada, Michał ; Milanović, Sladjan D.</creator><creatorcontrib>Milanović, Slobodan ; Kaczmarowski, Jan ; Ciesielski, Mariusz ; Trailović, Zoran ; Mielcarek, Miłosz ; Szczygieł, Ryszard ; Kwiatkowski, Mirosław ; Bałazy, Radomir ; Zasada, Michał ; Milanović, Sladjan D.</creatorcontrib><description>In recent years, forest fires have become an important issue in Central Europe. To model the probability of the occurrence of forest fires in the Lower Silesian Voivodeship of Poland, historical fire data and several types of predictors were collected or generated, including topographic, vegetation, climatic, and anthropogenic features. The main objectives of this study were to determine the importance of the predictors of forest fire occurrence and to map the probability of forest fire occurrence. The H2O driverless artificial intelligence (DAI) cloud platform was used to model forest fire probability. The gradient boosted machine (GBM) and random forest (RF) methods were applied to assess the probability of forest fire occurrence. Evaluation the importance of the variables was performed using the H2O platform permutation method. The most important variables were the presence of coniferous forest and the distance to agricultural land according to the GBM and RF methods, respectively. Model validation was conducted using receiver operating characteristic (ROC) analysis. The areas under the curve (AUCs) of the ROC plots from the GBM and RF models were 83.3% and 81.3%, respectively. Based on the results obtained, the GBM model can be recommended for the mapping of forest fire occurrence in the study area.</description><identifier>ISSN: 1999-4907</identifier><identifier>EISSN: 1999-4907</identifier><identifier>DOI: 10.3390/f14010046</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural land ; Algorithms ; Anthropogenic factors ; Artificial intelligence ; Coniferous forests ; Fire prevention ; Fire protection ; Forest &amp; brush fires ; Forest fires ; Humidity ; Machine learning ; Mapping ; Permutations ; Population density ; Precipitation ; Risk assessment ; Topography ; Variables ; Vegetation</subject><ispartof>Forests, 2023-01, Vol.14 (1), p.46</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-9b28de24333c7ce7d68ebe6eb6154d7acc710f66a52755e43e028d6d5bd0ffcf3</citedby><cites>FETCH-LOGICAL-c292t-9b28de24333c7ce7d68ebe6eb6154d7acc710f66a52755e43e028d6d5bd0ffcf3</cites><orcidid>0000-0001-7688-1201 ; 0000-0002-2726-583X ; 0000-0002-8260-999X ; 0000-0003-2580-2897 ; 0000-0002-1215-140X ; 0000-0003-1633-5115 ; 0000-0002-4881-296X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Milanović, Slobodan</creatorcontrib><creatorcontrib>Kaczmarowski, Jan</creatorcontrib><creatorcontrib>Ciesielski, Mariusz</creatorcontrib><creatorcontrib>Trailović, Zoran</creatorcontrib><creatorcontrib>Mielcarek, Miłosz</creatorcontrib><creatorcontrib>Szczygieł, Ryszard</creatorcontrib><creatorcontrib>Kwiatkowski, Mirosław</creatorcontrib><creatorcontrib>Bałazy, Radomir</creatorcontrib><creatorcontrib>Zasada, Michał</creatorcontrib><creatorcontrib>Milanović, Sladjan D.</creatorcontrib><title>Modeling and Mapping of Forest Fire Occurrence in the Lower Silesian Voivodeship of Poland Based on Machine Learning Methods</title><title>Forests</title><description>In recent years, forest fires have become an important issue in Central Europe. To model the probability of the occurrence of forest fires in the Lower Silesian Voivodeship of Poland, historical fire data and several types of predictors were collected or generated, including topographic, vegetation, climatic, and anthropogenic features. The main objectives of this study were to determine the importance of the predictors of forest fire occurrence and to map the probability of forest fire occurrence. The H2O driverless artificial intelligence (DAI) cloud platform was used to model forest fire probability. The gradient boosted machine (GBM) and random forest (RF) methods were applied to assess the probability of forest fire occurrence. Evaluation the importance of the variables was performed using the H2O platform permutation method. The most important variables were the presence of coniferous forest and the distance to agricultural land according to the GBM and RF methods, respectively. Model validation was conducted using receiver operating characteristic (ROC) analysis. The areas under the curve (AUCs) of the ROC plots from the GBM and RF models were 83.3% and 81.3%, respectively. Based on the results obtained, the GBM model can be recommended for the mapping of forest fire occurrence in the study area.</description><subject>Agricultural land</subject><subject>Algorithms</subject><subject>Anthropogenic factors</subject><subject>Artificial intelligence</subject><subject>Coniferous forests</subject><subject>Fire prevention</subject><subject>Fire protection</subject><subject>Forest &amp; brush fires</subject><subject>Forest fires</subject><subject>Humidity</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Permutations</subject><subject>Population density</subject><subject>Precipitation</subject><subject>Risk assessment</subject><subject>Topography</subject><subject>Variables</subject><subject>Vegetation</subject><issn>1999-4907</issn><issn>1999-4907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkE9LxDAQxYsouKx78BsEPHmopkmbNEddXBV2WcE_15ImE5tlTWrSVQQ_vCkr4lzmHd77DfOy7LTAF5QKfGmKEhcYl-wgmxRCiLwUmB_-08fZLMYNTlPxWpBykn2vvIatda9IOo1Wsu9H7Q1a-ABxQAsbAK2V2oUATgGyDg0doKX_hIAe7RailQ69ePuROLGz_Zh98NuRdi0jaORdwqrOupQCGdzIX8HQeR1PsiMjtxFmv3uaPS9unuZ3-XJ9ez-_WuaKCDLkoiW1BlJSShVXwDWroQUGLSuqUnOpFC-wYUxWhFcVlBRwCjBdtRobowydZmd7bh_8-y691Wz8Lrh0siGccYLrssLJdb53qeBjDGCaPtg3Gb6aAjdjv81fv_QHabltYA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Milanović, Slobodan</creator><creator>Kaczmarowski, Jan</creator><creator>Ciesielski, Mariusz</creator><creator>Trailović, Zoran</creator><creator>Mielcarek, Miłosz</creator><creator>Szczygieł, Ryszard</creator><creator>Kwiatkowski, Mirosław</creator><creator>Bałazy, Radomir</creator><creator>Zasada, Michał</creator><creator>Milanović, Sladjan D.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0001-7688-1201</orcidid><orcidid>https://orcid.org/0000-0002-2726-583X</orcidid><orcidid>https://orcid.org/0000-0002-8260-999X</orcidid><orcidid>https://orcid.org/0000-0003-2580-2897</orcidid><orcidid>https://orcid.org/0000-0002-1215-140X</orcidid><orcidid>https://orcid.org/0000-0003-1633-5115</orcidid><orcidid>https://orcid.org/0000-0002-4881-296X</orcidid></search><sort><creationdate>20230101</creationdate><title>Modeling and Mapping of Forest Fire Occurrence in the Lower Silesian Voivodeship of Poland Based on Machine Learning Methods</title><author>Milanović, Slobodan ; Kaczmarowski, Jan ; Ciesielski, Mariusz ; Trailović, Zoran ; Mielcarek, Miłosz ; Szczygieł, Ryszard ; Kwiatkowski, Mirosław ; Bałazy, Radomir ; Zasada, Michał ; Milanović, Sladjan D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-9b28de24333c7ce7d68ebe6eb6154d7acc710f66a52755e43e028d6d5bd0ffcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural land</topic><topic>Algorithms</topic><topic>Anthropogenic factors</topic><topic>Artificial intelligence</topic><topic>Coniferous forests</topic><topic>Fire prevention</topic><topic>Fire protection</topic><topic>Forest &amp; brush fires</topic><topic>Forest fires</topic><topic>Humidity</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Permutations</topic><topic>Population density</topic><topic>Precipitation</topic><topic>Risk assessment</topic><topic>Topography</topic><topic>Variables</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milanović, Slobodan</creatorcontrib><creatorcontrib>Kaczmarowski, Jan</creatorcontrib><creatorcontrib>Ciesielski, Mariusz</creatorcontrib><creatorcontrib>Trailović, Zoran</creatorcontrib><creatorcontrib>Mielcarek, Miłosz</creatorcontrib><creatorcontrib>Szczygieł, Ryszard</creatorcontrib><creatorcontrib>Kwiatkowski, Mirosław</creatorcontrib><creatorcontrib>Bałazy, Radomir</creatorcontrib><creatorcontrib>Zasada, Michał</creatorcontrib><creatorcontrib>Milanović, Sladjan D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>Forests</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milanović, Slobodan</au><au>Kaczmarowski, Jan</au><au>Ciesielski, Mariusz</au><au>Trailović, Zoran</au><au>Mielcarek, Miłosz</au><au>Szczygieł, Ryszard</au><au>Kwiatkowski, Mirosław</au><au>Bałazy, Radomir</au><au>Zasada, Michał</au><au>Milanović, Sladjan D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Mapping of Forest Fire Occurrence in the Lower Silesian Voivodeship of Poland Based on Machine Learning Methods</atitle><jtitle>Forests</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>46</spage><pages>46-</pages><issn>1999-4907</issn><eissn>1999-4907</eissn><abstract>In recent years, forest fires have become an important issue in Central Europe. To model the probability of the occurrence of forest fires in the Lower Silesian Voivodeship of Poland, historical fire data and several types of predictors were collected or generated, including topographic, vegetation, climatic, and anthropogenic features. The main objectives of this study were to determine the importance of the predictors of forest fire occurrence and to map the probability of forest fire occurrence. The H2O driverless artificial intelligence (DAI) cloud platform was used to model forest fire probability. The gradient boosted machine (GBM) and random forest (RF) methods were applied to assess the probability of forest fire occurrence. Evaluation the importance of the variables was performed using the H2O platform permutation method. The most important variables were the presence of coniferous forest and the distance to agricultural land according to the GBM and RF methods, respectively. Model validation was conducted using receiver operating characteristic (ROC) analysis. The areas under the curve (AUCs) of the ROC plots from the GBM and RF models were 83.3% and 81.3%, respectively. Based on the results obtained, the GBM model can be recommended for the mapping of forest fire occurrence in the study area.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/f14010046</doi><orcidid>https://orcid.org/0000-0001-7688-1201</orcidid><orcidid>https://orcid.org/0000-0002-2726-583X</orcidid><orcidid>https://orcid.org/0000-0002-8260-999X</orcidid><orcidid>https://orcid.org/0000-0003-2580-2897</orcidid><orcidid>https://orcid.org/0000-0002-1215-140X</orcidid><orcidid>https://orcid.org/0000-0003-1633-5115</orcidid><orcidid>https://orcid.org/0000-0002-4881-296X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1999-4907
ispartof Forests, 2023-01, Vol.14 (1), p.46
issn 1999-4907
1999-4907
language eng
recordid cdi_proquest_journals_2767208450
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Agricultural land
Algorithms
Anthropogenic factors
Artificial intelligence
Coniferous forests
Fire prevention
Fire protection
Forest & brush fires
Forest fires
Humidity
Machine learning
Mapping
Permutations
Population density
Precipitation
Risk assessment
Topography
Variables
Vegetation
title Modeling and Mapping of Forest Fire Occurrence in the Lower Silesian Voivodeship of Poland Based on Machine Learning Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Mapping%20of%20Forest%20Fire%20Occurrence%20in%20the%20Lower%20Silesian%20Voivodeship%20of%20Poland%20Based%20on%20Machine%20Learning%20Methods&rft.jtitle=Forests&rft.au=Milanovi%C4%87,%20Slobodan&rft.date=2023-01-01&rft.volume=14&rft.issue=1&rft.spage=46&rft.pages=46-&rft.issn=1999-4907&rft.eissn=1999-4907&rft_id=info:doi/10.3390/f14010046&rft_dat=%3Cproquest_cross%3E2767208450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767208450&rft_id=info:pmid/&rfr_iscdi=true