Establishing a Real-Time Multi-Step Ahead Forecasting Model of Unbalance Fault in a Rotor-Bearing System
Recently, prognostics and health management (PHM) has garnered a lot of attention in the industrial sector for its cost-effective maintenance and safe operation of the system. In this regard, vibration-based predictive maintenance using sensors plays a significant role in the diagnosis and prognosis...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2023-01, Vol.12 (2), p.312 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 312 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Bera, Banalata Lin, Chun-Ling Huang, Shyh-Chin Liang, Jin-Wei Lin, Po Ting |
description | Recently, prognostics and health management (PHM) has garnered a lot of attention in the industrial sector for its cost-effective maintenance and safe operation of the system. In this regard, vibration-based predictive maintenance using sensors plays a significant role in the diagnosis and prognosis of various faults. The need of the hour is to know when and which part must be replaced in advance for efficient and reliable operation. Unbalance is one major fault acting on any rotary system leading to excessive vibration and causing various other faults developing early failure in components directly or indirectly. In this paper, we show how a prognostic model can be built for the identification of future unbalance trend of a rotor-bearing system with the aid of a mathematical model of the system and statistical/machine learning methods. The prognostic model developed is used to forecast the unbalance time-series data of an industrial turbine rotor in real-time which forecasts the month ahead unbalance values. The proposed model is verified for prognostic analysis using datasets from a local plastic company. After careful examination of the results, it is concluded that the proposed model can aid in precisely detecting future system unbalance. |
doi_str_mv | 10.3390/electronics12020312 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2767207429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767207429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-e28f9294223b0f9fa0ec298bd7f4921d7b9a8832a5ae76161c25f82535988c5e3</originalsourceid><addsrcrecordid>eNptkMFOAjEQhhujiQR5Ai9NPK-2U5Ztj0hATSQmAufNbJnKkmWLbTnw9u4GDx6cy8zhm38mH2P3UjwqZcQTNWRT8G1towQBQkm4YgMQhckMGLj-M9-yUYx70ZWRSisxYLt5TFg1ddzV7RdH_knYZOv6QHx5alKdrRId-XRHuOULH8hiTD249FtquHd801bYYGuJL7Bb4HXbh_jkQ_ZMGHp2dY6JDnfsxmETafTbh2yzmK9nr9n7x8vbbPqeWQWQMgLtuk_HAKoSzjgUZMHoalu4sQG5LSqDWivAHKmYyIm0kDsNucqN1jYnNWQPl9xj8N8niqnc-1Nou5MlFJOiUzEG01HqQtngYwzkymOoDxjOpRRlb7X8x6r6ARFabNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767207429</pqid></control><display><type>article</type><title>Establishing a Real-Time Multi-Step Ahead Forecasting Model of Unbalance Fault in a Rotor-Bearing System</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bera, Banalata ; Lin, Chun-Ling ; Huang, Shyh-Chin ; Liang, Jin-Wei ; Lin, Po Ting</creator><creatorcontrib>Bera, Banalata ; Lin, Chun-Ling ; Huang, Shyh-Chin ; Liang, Jin-Wei ; Lin, Po Ting</creatorcontrib><description>Recently, prognostics and health management (PHM) has garnered a lot of attention in the industrial sector for its cost-effective maintenance and safe operation of the system. In this regard, vibration-based predictive maintenance using sensors plays a significant role in the diagnosis and prognosis of various faults. The need of the hour is to know when and which part must be replaced in advance for efficient and reliable operation. Unbalance is one major fault acting on any rotary system leading to excessive vibration and causing various other faults developing early failure in components directly or indirectly. In this paper, we show how a prognostic model can be built for the identification of future unbalance trend of a rotor-bearing system with the aid of a mathematical model of the system and statistical/machine learning methods. The prognostic model developed is used to forecast the unbalance time-series data of an industrial turbine rotor in real-time which forecasts the month ahead unbalance values. The proposed model is verified for prognostic analysis using datasets from a local plastic company. After careful examination of the results, it is concluded that the proposed model can aid in precisely detecting future system unbalance.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12020312</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial intelligence ; Crack propagation ; Deep learning ; Fault diagnosis ; Forecasting ; Forecasting techniques ; Machine learning ; Machinery ; Mathematical models ; Methods ; Predictive maintenance ; Real time ; Rotor-bearing systems ; Time series ; Trends ; Turbines ; Useful life ; Vibration</subject><ispartof>Electronics (Basel), 2023-01, Vol.12 (2), p.312</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-e28f9294223b0f9fa0ec298bd7f4921d7b9a8832a5ae76161c25f82535988c5e3</citedby><cites>FETCH-LOGICAL-c322t-e28f9294223b0f9fa0ec298bd7f4921d7b9a8832a5ae76161c25f82535988c5e3</cites><orcidid>0000-0001-9801-3595 ; 0000-0002-1947-157X ; 0000-0001-5907-7828 ; 0000-0003-2518-7046 ; 0000-0003-0712-0032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bera, Banalata</creatorcontrib><creatorcontrib>Lin, Chun-Ling</creatorcontrib><creatorcontrib>Huang, Shyh-Chin</creatorcontrib><creatorcontrib>Liang, Jin-Wei</creatorcontrib><creatorcontrib>Lin, Po Ting</creatorcontrib><title>Establishing a Real-Time Multi-Step Ahead Forecasting Model of Unbalance Fault in a Rotor-Bearing System</title><title>Electronics (Basel)</title><description>Recently, prognostics and health management (PHM) has garnered a lot of attention in the industrial sector for its cost-effective maintenance and safe operation of the system. In this regard, vibration-based predictive maintenance using sensors plays a significant role in the diagnosis and prognosis of various faults. The need of the hour is to know when and which part must be replaced in advance for efficient and reliable operation. Unbalance is one major fault acting on any rotary system leading to excessive vibration and causing various other faults developing early failure in components directly or indirectly. In this paper, we show how a prognostic model can be built for the identification of future unbalance trend of a rotor-bearing system with the aid of a mathematical model of the system and statistical/machine learning methods. The prognostic model developed is used to forecast the unbalance time-series data of an industrial turbine rotor in real-time which forecasts the month ahead unbalance values. The proposed model is verified for prognostic analysis using datasets from a local plastic company. After careful examination of the results, it is concluded that the proposed model can aid in precisely detecting future system unbalance.</description><subject>Artificial intelligence</subject><subject>Crack propagation</subject><subject>Deep learning</subject><subject>Fault diagnosis</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Machine learning</subject><subject>Machinery</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Predictive maintenance</subject><subject>Real time</subject><subject>Rotor-bearing systems</subject><subject>Time series</subject><subject>Trends</subject><subject>Turbines</subject><subject>Useful life</subject><subject>Vibration</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkMFOAjEQhhujiQR5Ai9NPK-2U5Ztj0hATSQmAufNbJnKkmWLbTnw9u4GDx6cy8zhm38mH2P3UjwqZcQTNWRT8G1towQBQkm4YgMQhckMGLj-M9-yUYx70ZWRSisxYLt5TFg1ddzV7RdH_knYZOv6QHx5alKdrRId-XRHuOULH8hiTD249FtquHd801bYYGuJL7Bb4HXbh_jkQ_ZMGHp2dY6JDnfsxmETafTbh2yzmK9nr9n7x8vbbPqeWQWQMgLtuk_HAKoSzjgUZMHoalu4sQG5LSqDWivAHKmYyIm0kDsNucqN1jYnNWQPl9xj8N8niqnc-1Nou5MlFJOiUzEG01HqQtngYwzkymOoDxjOpRRlb7X8x6r6ARFabNA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Bera, Banalata</creator><creator>Lin, Chun-Ling</creator><creator>Huang, Shyh-Chin</creator><creator>Liang, Jin-Wei</creator><creator>Lin, Po Ting</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-9801-3595</orcidid><orcidid>https://orcid.org/0000-0002-1947-157X</orcidid><orcidid>https://orcid.org/0000-0001-5907-7828</orcidid><orcidid>https://orcid.org/0000-0003-2518-7046</orcidid><orcidid>https://orcid.org/0000-0003-0712-0032</orcidid></search><sort><creationdate>20230101</creationdate><title>Establishing a Real-Time Multi-Step Ahead Forecasting Model of Unbalance Fault in a Rotor-Bearing System</title><author>Bera, Banalata ; Lin, Chun-Ling ; Huang, Shyh-Chin ; Liang, Jin-Wei ; Lin, Po Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-e28f9294223b0f9fa0ec298bd7f4921d7b9a8832a5ae76161c25f82535988c5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Crack propagation</topic><topic>Deep learning</topic><topic>Fault diagnosis</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Machine learning</topic><topic>Machinery</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Predictive maintenance</topic><topic>Real time</topic><topic>Rotor-bearing systems</topic><topic>Time series</topic><topic>Trends</topic><topic>Turbines</topic><topic>Useful life</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bera, Banalata</creatorcontrib><creatorcontrib>Lin, Chun-Ling</creatorcontrib><creatorcontrib>Huang, Shyh-Chin</creatorcontrib><creatorcontrib>Liang, Jin-Wei</creatorcontrib><creatorcontrib>Lin, Po Ting</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bera, Banalata</au><au>Lin, Chun-Ling</au><au>Huang, Shyh-Chin</au><au>Liang, Jin-Wei</au><au>Lin, Po Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Establishing a Real-Time Multi-Step Ahead Forecasting Model of Unbalance Fault in a Rotor-Bearing System</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>12</volume><issue>2</issue><spage>312</spage><pages>312-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Recently, prognostics and health management (PHM) has garnered a lot of attention in the industrial sector for its cost-effective maintenance and safe operation of the system. In this regard, vibration-based predictive maintenance using sensors plays a significant role in the diagnosis and prognosis of various faults. The need of the hour is to know when and which part must be replaced in advance for efficient and reliable operation. Unbalance is one major fault acting on any rotary system leading to excessive vibration and causing various other faults developing early failure in components directly or indirectly. In this paper, we show how a prognostic model can be built for the identification of future unbalance trend of a rotor-bearing system with the aid of a mathematical model of the system and statistical/machine learning methods. The prognostic model developed is used to forecast the unbalance time-series data of an industrial turbine rotor in real-time which forecasts the month ahead unbalance values. The proposed model is verified for prognostic analysis using datasets from a local plastic company. After careful examination of the results, it is concluded that the proposed model can aid in precisely detecting future system unbalance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12020312</doi><orcidid>https://orcid.org/0000-0001-9801-3595</orcidid><orcidid>https://orcid.org/0000-0002-1947-157X</orcidid><orcidid>https://orcid.org/0000-0001-5907-7828</orcidid><orcidid>https://orcid.org/0000-0003-2518-7046</orcidid><orcidid>https://orcid.org/0000-0003-0712-0032</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-01, Vol.12 (2), p.312 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2767207429 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial intelligence Crack propagation Deep learning Fault diagnosis Forecasting Forecasting techniques Machine learning Machinery Mathematical models Methods Predictive maintenance Real time Rotor-bearing systems Time series Trends Turbines Useful life Vibration |
title | Establishing a Real-Time Multi-Step Ahead Forecasting Model of Unbalance Fault in a Rotor-Bearing System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Establishing%20a%20Real-Time%20Multi-Step%20Ahead%20Forecasting%20Model%20of%20Unbalance%20Fault%20in%20a%20Rotor-Bearing%20System&rft.jtitle=Electronics%20(Basel)&rft.au=Bera,%20Banalata&rft.date=2023-01-01&rft.volume=12&rft.issue=2&rft.spage=312&rft.pages=312-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12020312&rft_dat=%3Cproquest_cross%3E2767207429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767207429&rft_id=info:pmid/&rfr_iscdi=true |