Warm Starting Variational Quantum Algorithms with Near Clifford Circuits
As a mainstream approach in the quantum machine learning field, variational quantum algorithms (VQAs) are frequently mentioned among the most promising applications for quantum computing. However, VQAs suffer from inefficient training methods. Here, we propose a pretraining strategy named near Cliff...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2023-01, Vol.12 (2), p.347 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 347 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Niu, Yun-Fei Zhang, Shuo Bao, Wan-Su |
description | As a mainstream approach in the quantum machine learning field, variational quantum algorithms (VQAs) are frequently mentioned among the most promising applications for quantum computing. However, VQAs suffer from inefficient training methods. Here, we propose a pretraining strategy named near Clifford circuits warm start (NCC-WS) to find the initialization for parameterized quantum circuits (PQCs) in VQAs. We explored the expressibility of NCCs and the correlation between the expressibility and acceleration. The achieved results suggest that NCC-WS can find the correct initialization for the training of VQAs to achieve acceleration. |
doi_str_mv | 10.3390/electronics12020347 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2767204637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767204637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-103376609c92d0785d4d35b6b3d5842e43ce5fdc07407dcdee980af4e8e4f4e93</originalsourceid><addsrcrecordid>eNptUM1KxDAYDKLgsu4TeAl4rn7NlzbNcSnqCosi_h1LNknXLG2zJini21tZDx6cw8wchmEYQs5zuESUcGU7q1Pwg9MxZ8AAuTgiMwZCZpJJdvzHn5JFjDuYIHOsEGZk9aZCT5-SCskNW_qqglPJ-UF19HFUQxp7uuy2Prj03kf6OQm9tyrQunNt64OhtQt6dCmekZNWddEufnVOXm6un-tVtn64vauX60wjYynLAVGUJUgtmQFRFYYbLDblBk1RcWY5alu0RoPgIIw21soKVMttZfnEEufk4tC7D_5jtDE1Oz-GaW9smCgFA16imFJ4SOngYwy2bfbB9Sp8NTk0P681_7yG35iOYxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767204637</pqid></control><display><type>article</type><title>Warm Starting Variational Quantum Algorithms with Near Clifford Circuits</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Niu, Yun-Fei ; Zhang, Shuo ; Bao, Wan-Su</creator><creatorcontrib>Niu, Yun-Fei ; Zhang, Shuo ; Bao, Wan-Su</creatorcontrib><description>As a mainstream approach in the quantum machine learning field, variational quantum algorithms (VQAs) are frequently mentioned among the most promising applications for quantum computing. However, VQAs suffer from inefficient training methods. Here, we propose a pretraining strategy named near Clifford circuits warm start (NCC-WS) to find the initialization for parameterized quantum circuits (PQCs) in VQAs. We explored the expressibility of NCCs and the correlation between the expressibility and acceleration. The achieved results suggest that NCC-WS can find the correct initialization for the training of VQAs to achieve acceleration.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12020347</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Circuits ; Hilbert space ; Machine learning ; Optimization ; Probability ; Probability distribution ; Quantum computing ; Training</subject><ispartof>Electronics (Basel), 2023-01, Vol.12 (2), p.347</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-103376609c92d0785d4d35b6b3d5842e43ce5fdc07407dcdee980af4e8e4f4e93</citedby><cites>FETCH-LOGICAL-c322t-103376609c92d0785d4d35b6b3d5842e43ce5fdc07407dcdee980af4e8e4f4e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Niu, Yun-Fei</creatorcontrib><creatorcontrib>Zhang, Shuo</creatorcontrib><creatorcontrib>Bao, Wan-Su</creatorcontrib><title>Warm Starting Variational Quantum Algorithms with Near Clifford Circuits</title><title>Electronics (Basel)</title><description>As a mainstream approach in the quantum machine learning field, variational quantum algorithms (VQAs) are frequently mentioned among the most promising applications for quantum computing. However, VQAs suffer from inefficient training methods. Here, we propose a pretraining strategy named near Clifford circuits warm start (NCC-WS) to find the initialization for parameterized quantum circuits (PQCs) in VQAs. We explored the expressibility of NCCs and the correlation between the expressibility and acceleration. The achieved results suggest that NCC-WS can find the correct initialization for the training of VQAs to achieve acceleration.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Hilbert space</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Quantum computing</subject><subject>Training</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUM1KxDAYDKLgsu4TeAl4rn7NlzbNcSnqCosi_h1LNknXLG2zJini21tZDx6cw8wchmEYQs5zuESUcGU7q1Pwg9MxZ8AAuTgiMwZCZpJJdvzHn5JFjDuYIHOsEGZk9aZCT5-SCskNW_qqglPJ-UF19HFUQxp7uuy2Prj03kf6OQm9tyrQunNt64OhtQt6dCmekZNWddEufnVOXm6un-tVtn64vauX60wjYynLAVGUJUgtmQFRFYYbLDblBk1RcWY5alu0RoPgIIw21soKVMttZfnEEufk4tC7D_5jtDE1Oz-GaW9smCgFA16imFJ4SOngYwy2bfbB9Sp8NTk0P681_7yG35iOYxg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Niu, Yun-Fei</creator><creator>Zhang, Shuo</creator><creator>Bao, Wan-Su</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230101</creationdate><title>Warm Starting Variational Quantum Algorithms with Near Clifford Circuits</title><author>Niu, Yun-Fei ; Zhang, Shuo ; Bao, Wan-Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-103376609c92d0785d4d35b6b3d5842e43ce5fdc07407dcdee980af4e8e4f4e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Hilbert space</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Quantum computing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Yun-Fei</creatorcontrib><creatorcontrib>Zhang, Shuo</creatorcontrib><creatorcontrib>Bao, Wan-Su</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Yun-Fei</au><au>Zhang, Shuo</au><au>Bao, Wan-Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Warm Starting Variational Quantum Algorithms with Near Clifford Circuits</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>12</volume><issue>2</issue><spage>347</spage><pages>347-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>As a mainstream approach in the quantum machine learning field, variational quantum algorithms (VQAs) are frequently mentioned among the most promising applications for quantum computing. However, VQAs suffer from inefficient training methods. Here, we propose a pretraining strategy named near Clifford circuits warm start (NCC-WS) to find the initialization for parameterized quantum circuits (PQCs) in VQAs. We explored the expressibility of NCCs and the correlation between the expressibility and acceleration. The achieved results suggest that NCC-WS can find the correct initialization for the training of VQAs to achieve acceleration.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12020347</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-01, Vol.12 (2), p.347 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2767204637 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Circuits Hilbert space Machine learning Optimization Probability Probability distribution Quantum computing Training |
title | Warm Starting Variational Quantum Algorithms with Near Clifford Circuits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A33%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Warm%20Starting%20Variational%20Quantum%20Algorithms%20with%20Near%20Clifford%20Circuits&rft.jtitle=Electronics%20(Basel)&rft.au=Niu,%20Yun-Fei&rft.date=2023-01-01&rft.volume=12&rft.issue=2&rft.spage=347&rft.pages=347-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12020347&rft_dat=%3Cproquest_cross%3E2767204637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767204637&rft_id=info:pmid/&rfr_iscdi=true |