Warm Starting Variational Quantum Algorithms with Near Clifford Circuits

As a mainstream approach in the quantum machine learning field, variational quantum algorithms (VQAs) are frequently mentioned among the most promising applications for quantum computing. However, VQAs suffer from inefficient training methods. Here, we propose a pretraining strategy named near Cliff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2023-01, Vol.12 (2), p.347
Hauptverfasser: Niu, Yun-Fei, Zhang, Shuo, Bao, Wan-Su
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 347
container_title Electronics (Basel)
container_volume 12
creator Niu, Yun-Fei
Zhang, Shuo
Bao, Wan-Su
description As a mainstream approach in the quantum machine learning field, variational quantum algorithms (VQAs) are frequently mentioned among the most promising applications for quantum computing. However, VQAs suffer from inefficient training methods. Here, we propose a pretraining strategy named near Clifford circuits warm start (NCC-WS) to find the initialization for parameterized quantum circuits (PQCs) in VQAs. We explored the expressibility of NCCs and the correlation between the expressibility and acceleration. The achieved results suggest that NCC-WS can find the correct initialization for the training of VQAs to achieve acceleration.
doi_str_mv 10.3390/electronics12020347
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2767204637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767204637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-103376609c92d0785d4d35b6b3d5842e43ce5fdc07407dcdee980af4e8e4f4e93</originalsourceid><addsrcrecordid>eNptUM1KxDAYDKLgsu4TeAl4rn7NlzbNcSnqCosi_h1LNknXLG2zJini21tZDx6cw8wchmEYQs5zuESUcGU7q1Pwg9MxZ8AAuTgiMwZCZpJJdvzHn5JFjDuYIHOsEGZk9aZCT5-SCskNW_qqglPJ-UF19HFUQxp7uuy2Prj03kf6OQm9tyrQunNt64OhtQt6dCmekZNWddEufnVOXm6un-tVtn64vauX60wjYynLAVGUJUgtmQFRFYYbLDblBk1RcWY5alu0RoPgIIw21soKVMttZfnEEufk4tC7D_5jtDE1Oz-GaW9smCgFA16imFJ4SOngYwy2bfbB9Sp8NTk0P681_7yG35iOYxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767204637</pqid></control><display><type>article</type><title>Warm Starting Variational Quantum Algorithms with Near Clifford Circuits</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Niu, Yun-Fei ; Zhang, Shuo ; Bao, Wan-Su</creator><creatorcontrib>Niu, Yun-Fei ; Zhang, Shuo ; Bao, Wan-Su</creatorcontrib><description>As a mainstream approach in the quantum machine learning field, variational quantum algorithms (VQAs) are frequently mentioned among the most promising applications for quantum computing. However, VQAs suffer from inefficient training methods. Here, we propose a pretraining strategy named near Clifford circuits warm start (NCC-WS) to find the initialization for parameterized quantum circuits (PQCs) in VQAs. We explored the expressibility of NCCs and the correlation between the expressibility and acceleration. The achieved results suggest that NCC-WS can find the correct initialization for the training of VQAs to achieve acceleration.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12020347</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Circuits ; Hilbert space ; Machine learning ; Optimization ; Probability ; Probability distribution ; Quantum computing ; Training</subject><ispartof>Electronics (Basel), 2023-01, Vol.12 (2), p.347</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-103376609c92d0785d4d35b6b3d5842e43ce5fdc07407dcdee980af4e8e4f4e93</citedby><cites>FETCH-LOGICAL-c322t-103376609c92d0785d4d35b6b3d5842e43ce5fdc07407dcdee980af4e8e4f4e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Niu, Yun-Fei</creatorcontrib><creatorcontrib>Zhang, Shuo</creatorcontrib><creatorcontrib>Bao, Wan-Su</creatorcontrib><title>Warm Starting Variational Quantum Algorithms with Near Clifford Circuits</title><title>Electronics (Basel)</title><description>As a mainstream approach in the quantum machine learning field, variational quantum algorithms (VQAs) are frequently mentioned among the most promising applications for quantum computing. However, VQAs suffer from inefficient training methods. Here, we propose a pretraining strategy named near Clifford circuits warm start (NCC-WS) to find the initialization for parameterized quantum circuits (PQCs) in VQAs. We explored the expressibility of NCCs and the correlation between the expressibility and acceleration. The achieved results suggest that NCC-WS can find the correct initialization for the training of VQAs to achieve acceleration.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Hilbert space</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Quantum computing</subject><subject>Training</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUM1KxDAYDKLgsu4TeAl4rn7NlzbNcSnqCosi_h1LNknXLG2zJini21tZDx6cw8wchmEYQs5zuESUcGU7q1Pwg9MxZ8AAuTgiMwZCZpJJdvzHn5JFjDuYIHOsEGZk9aZCT5-SCskNW_qqglPJ-UF19HFUQxp7uuy2Prj03kf6OQm9tyrQunNt64OhtQt6dCmekZNWddEufnVOXm6un-tVtn64vauX60wjYynLAVGUJUgtmQFRFYYbLDblBk1RcWY5alu0RoPgIIw21soKVMttZfnEEufk4tC7D_5jtDE1Oz-GaW9smCgFA16imFJ4SOngYwy2bfbB9Sp8NTk0P681_7yG35iOYxg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Niu, Yun-Fei</creator><creator>Zhang, Shuo</creator><creator>Bao, Wan-Su</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230101</creationdate><title>Warm Starting Variational Quantum Algorithms with Near Clifford Circuits</title><author>Niu, Yun-Fei ; Zhang, Shuo ; Bao, Wan-Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-103376609c92d0785d4d35b6b3d5842e43ce5fdc07407dcdee980af4e8e4f4e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Hilbert space</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Quantum computing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Yun-Fei</creatorcontrib><creatorcontrib>Zhang, Shuo</creatorcontrib><creatorcontrib>Bao, Wan-Su</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Yun-Fei</au><au>Zhang, Shuo</au><au>Bao, Wan-Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Warm Starting Variational Quantum Algorithms with Near Clifford Circuits</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>12</volume><issue>2</issue><spage>347</spage><pages>347-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>As a mainstream approach in the quantum machine learning field, variational quantum algorithms (VQAs) are frequently mentioned among the most promising applications for quantum computing. However, VQAs suffer from inefficient training methods. Here, we propose a pretraining strategy named near Clifford circuits warm start (NCC-WS) to find the initialization for parameterized quantum circuits (PQCs) in VQAs. We explored the expressibility of NCCs and the correlation between the expressibility and acceleration. The achieved results suggest that NCC-WS can find the correct initialization for the training of VQAs to achieve acceleration.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12020347</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2023-01, Vol.12 (2), p.347
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2767204637
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Circuits
Hilbert space
Machine learning
Optimization
Probability
Probability distribution
Quantum computing
Training
title Warm Starting Variational Quantum Algorithms with Near Clifford Circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A33%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Warm%20Starting%20Variational%20Quantum%20Algorithms%20with%20Near%20Clifford%20Circuits&rft.jtitle=Electronics%20(Basel)&rft.au=Niu,%20Yun-Fei&rft.date=2023-01-01&rft.volume=12&rft.issue=2&rft.spage=347&rft.pages=347-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12020347&rft_dat=%3Cproquest_cross%3E2767204637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767204637&rft_id=info:pmid/&rfr_iscdi=true