Cr-Zn/Ni-Containing Nanocomposites as Effective Magnetically Recoverable Catalysts for CO2 Hydrogenation to Methanol: The Role of Metal Doping and Polymer Co-Support
CO2 hydrogenation to methanol is an important process that could solve the problem of emitted CO2 that contributes to environmental concern. Here we developed Cr-, Cr-Zn-, and Cr-Ni-containing nanocomposites based on a solid support (SiO2 or Al2O3) with embedded magnetic nanoparticles (NPs) and cove...
Gespeichert in:
Veröffentlicht in: | Catalysts 2023-01, Vol.13 (1), p.1 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Catalysts |
container_volume | 13 |
creator | Sorokina, Svetlana A. Kuchkina, Nina V. Grigoriev, Maxim E. Bykov, Alexey V. Ratnikov, Andrey K. Doluda, Valentin Yu Sulman, Mikhail G. Shifrina, Zinaida B. |
description | CO2 hydrogenation to methanol is an important process that could solve the problem of emitted CO2 that contributes to environmental concern. Here we developed Cr-, Cr-Zn-, and Cr-Ni-containing nanocomposites based on a solid support (SiO2 or Al2O3) with embedded magnetic nanoparticles (NPs) and covered by a cross-linked pyridylphenylene polymer layer. The decomposition of Cr, Zn, and Ni precursors in the presence of supports containing magnetic oxide led to formation of amorphous metal oxides evenly distributed over the support-polymer space, together with the partial diffusion of metal species into magnetic NPs. We demonstrated the catalytic activity of Cr2O3 in the hydrogenation reaction of CO2 to methanol, which was further increased by 50% and 204% by incorporation of Ni and Zn species, respectively. The fine intermixing of metal species ensures an enhanced methanol productivity. Careful adjustment of constituent elements, e.g., catalytic metal, type of support, presence of magnetic NPs, and deposition of hydrophobic polymer layer contributes to the synergetic promotional effect required for activation of CO2 molecules as well. The results of catalytic recycle experiments revealed excellent stability of the catalysts due to protective role of hydrophobic polymer. |
doi_str_mv | 10.3390/catal13010001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2767188417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767188417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-fce9ee7838662b960c985843837105c72aeef972072f587dd9f592ea2f4043b23</originalsourceid><addsrcrecordid>eNpVkctOwzAQRSMEEhV0yd4S61A_ktphh8KjSOWhAhs2keuO26DUE2wXKR_Ef5KoLGA1o9GZe0dzk-SM0QshCjoxOuqGCcoopewgGXEqRZqJLDv80x8n4xA-eoIWTCiWj5Lv0qfvbvJYpyW6qGtXuzV51A4NblsMdYRAdCA31oKJ9ReQB712EGujm6YjCzD4BV4vGyDlcEAXYiAWPSmfOJl1K49rcDrW6EhE8gBx00s3l-R1A2SB_RbaYaobco3tYK3dijxj022h18D0Zde26ONpcmR1E2D8W0-St9ub13KWzp_u7sureWoEzWJqDRQAUgk1nfJlMaWmULnKhBKS0dxIrgFsIft3cJsruVoVNi84aG4zmoklFyfJ-V639fi5gxCrD9x511tWXE4lUypjsqfSPWU8huDBVq2vt9p3FaPVEEb1LwzxA7JMfkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767188417</pqid></control><display><type>article</type><title>Cr-Zn/Ni-Containing Nanocomposites as Effective Magnetically Recoverable Catalysts for CO2 Hydrogenation to Methanol: The Role of Metal Doping and Polymer Co-Support</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB Electronic Journals Library</source><creator>Sorokina, Svetlana A. ; Kuchkina, Nina V. ; Grigoriev, Maxim E. ; Bykov, Alexey V. ; Ratnikov, Andrey K. ; Doluda, Valentin Yu ; Sulman, Mikhail G. ; Shifrina, Zinaida B.</creator><creatorcontrib>Sorokina, Svetlana A. ; Kuchkina, Nina V. ; Grigoriev, Maxim E. ; Bykov, Alexey V. ; Ratnikov, Andrey K. ; Doluda, Valentin Yu ; Sulman, Mikhail G. ; Shifrina, Zinaida B.</creatorcontrib><description>CO2 hydrogenation to methanol is an important process that could solve the problem of emitted CO2 that contributes to environmental concern. Here we developed Cr-, Cr-Zn-, and Cr-Ni-containing nanocomposites based on a solid support (SiO2 or Al2O3) with embedded magnetic nanoparticles (NPs) and covered by a cross-linked pyridylphenylene polymer layer. The decomposition of Cr, Zn, and Ni precursors in the presence of supports containing magnetic oxide led to formation of amorphous metal oxides evenly distributed over the support-polymer space, together with the partial diffusion of metal species into magnetic NPs. We demonstrated the catalytic activity of Cr2O3 in the hydrogenation reaction of CO2 to methanol, which was further increased by 50% and 204% by incorporation of Ni and Zn species, respectively. The fine intermixing of metal species ensures an enhanced methanol productivity. Careful adjustment of constituent elements, e.g., catalytic metal, type of support, presence of magnetic NPs, and deposition of hydrophobic polymer layer contributes to the synergetic promotional effect required for activation of CO2 molecules as well. The results of catalytic recycle experiments revealed excellent stability of the catalysts due to protective role of hydrophobic polymer.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal13010001</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum oxide ; Carbon ; Carbon dioxide ; Catalysts ; Catalytic activity ; Chemical elements ; Chemical reactions ; Decomposition ; Fischer-Tropsch process ; Hydrogenation ; Hydrophobicity ; Metal oxides ; Metallurgical constituents ; Methanol ; Morphology ; Nanocomposites ; Nanoparticles ; Polymers ; Silicon dioxide ; Sintering ; Species diffusion ; Synthesis gas ; Zinc</subject><ispartof>Catalysts, 2023-01, Vol.13 (1), p.1</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-fce9ee7838662b960c985843837105c72aeef972072f587dd9f592ea2f4043b23</citedby><cites>FETCH-LOGICAL-c304t-fce9ee7838662b960c985843837105c72aeef972072f587dd9f592ea2f4043b23</cites><orcidid>0000-0001-5838-8907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sorokina, Svetlana A.</creatorcontrib><creatorcontrib>Kuchkina, Nina V.</creatorcontrib><creatorcontrib>Grigoriev, Maxim E.</creatorcontrib><creatorcontrib>Bykov, Alexey V.</creatorcontrib><creatorcontrib>Ratnikov, Andrey K.</creatorcontrib><creatorcontrib>Doluda, Valentin Yu</creatorcontrib><creatorcontrib>Sulman, Mikhail G.</creatorcontrib><creatorcontrib>Shifrina, Zinaida B.</creatorcontrib><title>Cr-Zn/Ni-Containing Nanocomposites as Effective Magnetically Recoverable Catalysts for CO2 Hydrogenation to Methanol: The Role of Metal Doping and Polymer Co-Support</title><title>Catalysts</title><description>CO2 hydrogenation to methanol is an important process that could solve the problem of emitted CO2 that contributes to environmental concern. Here we developed Cr-, Cr-Zn-, and Cr-Ni-containing nanocomposites based on a solid support (SiO2 or Al2O3) with embedded magnetic nanoparticles (NPs) and covered by a cross-linked pyridylphenylene polymer layer. The decomposition of Cr, Zn, and Ni precursors in the presence of supports containing magnetic oxide led to formation of amorphous metal oxides evenly distributed over the support-polymer space, together with the partial diffusion of metal species into magnetic NPs. We demonstrated the catalytic activity of Cr2O3 in the hydrogenation reaction of CO2 to methanol, which was further increased by 50% and 204% by incorporation of Ni and Zn species, respectively. The fine intermixing of metal species ensures an enhanced methanol productivity. Careful adjustment of constituent elements, e.g., catalytic metal, type of support, presence of magnetic NPs, and deposition of hydrophobic polymer layer contributes to the synergetic promotional effect required for activation of CO2 molecules as well. The results of catalytic recycle experiments revealed excellent stability of the catalysts due to protective role of hydrophobic polymer.</description><subject>Aluminum oxide</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical elements</subject><subject>Chemical reactions</subject><subject>Decomposition</subject><subject>Fischer-Tropsch process</subject><subject>Hydrogenation</subject><subject>Hydrophobicity</subject><subject>Metal oxides</subject><subject>Metallurgical constituents</subject><subject>Methanol</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Polymers</subject><subject>Silicon dioxide</subject><subject>Sintering</subject><subject>Species diffusion</subject><subject>Synthesis gas</subject><subject>Zinc</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkctOwzAQRSMEEhV0yd4S61A_ktphh8KjSOWhAhs2keuO26DUE2wXKR_Ef5KoLGA1o9GZe0dzk-SM0QshCjoxOuqGCcoopewgGXEqRZqJLDv80x8n4xA-eoIWTCiWj5Lv0qfvbvJYpyW6qGtXuzV51A4NblsMdYRAdCA31oKJ9ReQB712EGujm6YjCzD4BV4vGyDlcEAXYiAWPSmfOJl1K49rcDrW6EhE8gBx00s3l-R1A2SB_RbaYaobco3tYK3dijxj022h18D0Zde26ONpcmR1E2D8W0-St9ub13KWzp_u7sureWoEzWJqDRQAUgk1nfJlMaWmULnKhBKS0dxIrgFsIft3cJsruVoVNi84aG4zmoklFyfJ-V639fi5gxCrD9x511tWXE4lUypjsqfSPWU8huDBVq2vt9p3FaPVEEb1LwzxA7JMfkA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Sorokina, Svetlana A.</creator><creator>Kuchkina, Nina V.</creator><creator>Grigoriev, Maxim E.</creator><creator>Bykov, Alexey V.</creator><creator>Ratnikov, Andrey K.</creator><creator>Doluda, Valentin Yu</creator><creator>Sulman, Mikhail G.</creator><creator>Shifrina, Zinaida B.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5838-8907</orcidid></search><sort><creationdate>20230101</creationdate><title>Cr-Zn/Ni-Containing Nanocomposites as Effective Magnetically Recoverable Catalysts for CO2 Hydrogenation to Methanol: The Role of Metal Doping and Polymer Co-Support</title><author>Sorokina, Svetlana A. ; Kuchkina, Nina V. ; Grigoriev, Maxim E. ; Bykov, Alexey V. ; Ratnikov, Andrey K. ; Doluda, Valentin Yu ; Sulman, Mikhail G. ; Shifrina, Zinaida B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-fce9ee7838662b960c985843837105c72aeef972072f587dd9f592ea2f4043b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum oxide</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical elements</topic><topic>Chemical reactions</topic><topic>Decomposition</topic><topic>Fischer-Tropsch process</topic><topic>Hydrogenation</topic><topic>Hydrophobicity</topic><topic>Metal oxides</topic><topic>Metallurgical constituents</topic><topic>Methanol</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Polymers</topic><topic>Silicon dioxide</topic><topic>Sintering</topic><topic>Species diffusion</topic><topic>Synthesis gas</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sorokina, Svetlana A.</creatorcontrib><creatorcontrib>Kuchkina, Nina V.</creatorcontrib><creatorcontrib>Grigoriev, Maxim E.</creatorcontrib><creatorcontrib>Bykov, Alexey V.</creatorcontrib><creatorcontrib>Ratnikov, Andrey K.</creatorcontrib><creatorcontrib>Doluda, Valentin Yu</creatorcontrib><creatorcontrib>Sulman, Mikhail G.</creatorcontrib><creatorcontrib>Shifrina, Zinaida B.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sorokina, Svetlana A.</au><au>Kuchkina, Nina V.</au><au>Grigoriev, Maxim E.</au><au>Bykov, Alexey V.</au><au>Ratnikov, Andrey K.</au><au>Doluda, Valentin Yu</au><au>Sulman, Mikhail G.</au><au>Shifrina, Zinaida B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cr-Zn/Ni-Containing Nanocomposites as Effective Magnetically Recoverable Catalysts for CO2 Hydrogenation to Methanol: The Role of Metal Doping and Polymer Co-Support</atitle><jtitle>Catalysts</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>CO2 hydrogenation to methanol is an important process that could solve the problem of emitted CO2 that contributes to environmental concern. Here we developed Cr-, Cr-Zn-, and Cr-Ni-containing nanocomposites based on a solid support (SiO2 or Al2O3) with embedded magnetic nanoparticles (NPs) and covered by a cross-linked pyridylphenylene polymer layer. The decomposition of Cr, Zn, and Ni precursors in the presence of supports containing magnetic oxide led to formation of amorphous metal oxides evenly distributed over the support-polymer space, together with the partial diffusion of metal species into magnetic NPs. We demonstrated the catalytic activity of Cr2O3 in the hydrogenation reaction of CO2 to methanol, which was further increased by 50% and 204% by incorporation of Ni and Zn species, respectively. The fine intermixing of metal species ensures an enhanced methanol productivity. Careful adjustment of constituent elements, e.g., catalytic metal, type of support, presence of magnetic NPs, and deposition of hydrophobic polymer layer contributes to the synergetic promotional effect required for activation of CO2 molecules as well. The results of catalytic recycle experiments revealed excellent stability of the catalysts due to protective role of hydrophobic polymer.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/catal13010001</doi><orcidid>https://orcid.org/0000-0001-5838-8907</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4344 |
ispartof | Catalysts, 2023-01, Vol.13 (1), p.1 |
issn | 2073-4344 2073-4344 |
language | eng |
recordid | cdi_proquest_journals_2767188417 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB Electronic Journals Library |
subjects | Aluminum oxide Carbon Carbon dioxide Catalysts Catalytic activity Chemical elements Chemical reactions Decomposition Fischer-Tropsch process Hydrogenation Hydrophobicity Metal oxides Metallurgical constituents Methanol Morphology Nanocomposites Nanoparticles Polymers Silicon dioxide Sintering Species diffusion Synthesis gas Zinc |
title | Cr-Zn/Ni-Containing Nanocomposites as Effective Magnetically Recoverable Catalysts for CO2 Hydrogenation to Methanol: The Role of Metal Doping and Polymer Co-Support |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cr-Zn/Ni-Containing%20Nanocomposites%20as%20Effective%20Magnetically%20Recoverable%20Catalysts%20for%20CO2%20Hydrogenation%20to%20Methanol:%20The%20Role%20of%20Metal%20Doping%20and%20Polymer%20Co-Support&rft.jtitle=Catalysts&rft.au=Sorokina,%20Svetlana%20A.&rft.date=2023-01-01&rft.volume=13&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal13010001&rft_dat=%3Cproquest_cross%3E2767188417%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767188417&rft_id=info:pmid/&rfr_iscdi=true |