In-situ monitoring laser based directed energy deposition process with deep convolutional neural network
Laser based directed energy deposition (L-DED) is a promising type of additive manufacturing technology. The non-destructive testing technology for the quality monitoring of L-DED processed parts is becoming more and more demanding in terms of accuracy, real-time, and ease of operation. This paper i...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent manufacturing 2023-02, Vol.34 (2), p.683-693 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 693 |
---|---|
container_issue | 2 |
container_start_page | 683 |
container_title | Journal of intelligent manufacturing |
container_volume | 34 |
creator | Mi, Jiqian Zhang, Yikai Li, Hui Shen, Shengnan Yang, Yongqiang Song, Changhui Zhou, Xin Duan, Yucong Lu, Junwen Mai, Haibo |
description | Laser based directed energy deposition (L-DED) is a promising type of additive manufacturing technology. The non-destructive testing technology for the quality monitoring of L-DED processed parts is becoming more and more demanding in terms of accuracy, real-time, and ease of operation. This paper introduces a new image recognition system based on a deep convolutional neural network, which uses multiple lightweight architectures to reduce detection time. In order to eliminate the interference better, it improves the penalty function, which effectively improves the accuracy. Judging from the detection results of the data set, the accuracy of the model training reaches 94.71%, which achieves a very good image segmentation effect and solves the technical problem of in-situ monitoring of the L-DED process. This system realizes the positioning of the spatters for the first time, and at the same time, the number of spatters and area of molten pool are correlated to the laser scanning speed and the laser power. |
doi_str_mv | 10.1007/s10845-021-01820-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2766899276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766899276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-ddc664fca19626c640dcb08ba260f4d2f9b1b0d986ba96e56a0c022a8bebff703</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mxYu4kTH1HFo1IlLnC2_EqbksbBTqj673EaJG5cdlb27Gj0IXRL4Z4CFA-RQpnlBBglQEsGBM7QjOYFIyXN8nM0A5Fzkuc0v0RXMe4AQJScztB21ZJY9wPe-7bufajbDW5UdAHrNC22dXCmT4trXdgcsXWdT_7at7gL3rgY8aHut-ndddj49ts3w_irGty6IZykP_jweY0uKtVEd_Orc_Tx_PS-fCXrt5fV8nFNDMtET6w1nGeVUVRwxg3PwBoNpVaMQ5VZVglNNdhUXivBXc4VGGBMldrpqipgMUd3U26q9zW42MudH0LqEyUrOC-FSJJcbHKZ4GMMrpJdqPcqHCUFORKVE1GZiMoTUTlGL6aj2I2cXPiL_ufqBxoee-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766899276</pqid></control><display><type>article</type><title>In-situ monitoring laser based directed energy deposition process with deep convolutional neural network</title><source>Springer Nature - Complete Springer Journals</source><creator>Mi, Jiqian ; Zhang, Yikai ; Li, Hui ; Shen, Shengnan ; Yang, Yongqiang ; Song, Changhui ; Zhou, Xin ; Duan, Yucong ; Lu, Junwen ; Mai, Haibo</creator><creatorcontrib>Mi, Jiqian ; Zhang, Yikai ; Li, Hui ; Shen, Shengnan ; Yang, Yongqiang ; Song, Changhui ; Zhou, Xin ; Duan, Yucong ; Lu, Junwen ; Mai, Haibo</creatorcontrib><description>Laser based directed energy deposition (L-DED) is a promising type of additive manufacturing technology. The non-destructive testing technology for the quality monitoring of L-DED processed parts is becoming more and more demanding in terms of accuracy, real-time, and ease of operation. This paper introduces a new image recognition system based on a deep convolutional neural network, which uses multiple lightweight architectures to reduce detection time. In order to eliminate the interference better, it improves the penalty function, which effectively improves the accuracy. Judging from the detection results of the data set, the accuracy of the model training reaches 94.71%, which achieves a very good image segmentation effect and solves the technical problem of in-situ monitoring of the L-DED process. This system realizes the positioning of the spatters for the first time, and at the same time, the number of spatters and area of molten pool are correlated to the laser scanning speed and the laser power.</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-021-01820-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Advanced manufacturing technologies ; Artificial neural networks ; Business and Management ; Control ; Deposition ; Image segmentation ; Laser applications ; Lasers ; Machines ; Manufacturing ; Mechatronics ; Model accuracy ; Monitoring ; Neural networks ; Nondestructive testing ; Object recognition ; Penalty function ; Processes ; Production ; Robotics</subject><ispartof>Journal of intelligent manufacturing, 2023-02, Vol.34 (2), p.683-693</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-ddc664fca19626c640dcb08ba260f4d2f9b1b0d986ba96e56a0c022a8bebff703</citedby><cites>FETCH-LOGICAL-c249t-ddc664fca19626c640dcb08ba260f4d2f9b1b0d986ba96e56a0c022a8bebff703</cites><orcidid>0000-0002-4404-8845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10845-021-01820-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10845-021-01820-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Mi, Jiqian</creatorcontrib><creatorcontrib>Zhang, Yikai</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Shen, Shengnan</creatorcontrib><creatorcontrib>Yang, Yongqiang</creatorcontrib><creatorcontrib>Song, Changhui</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Duan, Yucong</creatorcontrib><creatorcontrib>Lu, Junwen</creatorcontrib><creatorcontrib>Mai, Haibo</creatorcontrib><title>In-situ monitoring laser based directed energy deposition process with deep convolutional neural network</title><title>Journal of intelligent manufacturing</title><addtitle>J Intell Manuf</addtitle><description>Laser based directed energy deposition (L-DED) is a promising type of additive manufacturing technology. The non-destructive testing technology for the quality monitoring of L-DED processed parts is becoming more and more demanding in terms of accuracy, real-time, and ease of operation. This paper introduces a new image recognition system based on a deep convolutional neural network, which uses multiple lightweight architectures to reduce detection time. In order to eliminate the interference better, it improves the penalty function, which effectively improves the accuracy. Judging from the detection results of the data set, the accuracy of the model training reaches 94.71%, which achieves a very good image segmentation effect and solves the technical problem of in-situ monitoring of the L-DED process. This system realizes the positioning of the spatters for the first time, and at the same time, the number of spatters and area of molten pool are correlated to the laser scanning speed and the laser power.</description><subject>Accuracy</subject><subject>Advanced manufacturing technologies</subject><subject>Artificial neural networks</subject><subject>Business and Management</subject><subject>Control</subject><subject>Deposition</subject><subject>Image segmentation</subject><subject>Laser applications</subject><subject>Lasers</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechatronics</subject><subject>Model accuracy</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Nondestructive testing</subject><subject>Object recognition</subject><subject>Penalty function</subject><subject>Processes</subject><subject>Production</subject><subject>Robotics</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mxYu4kTH1HFo1IlLnC2_EqbksbBTqj673EaJG5cdlb27Gj0IXRL4Z4CFA-RQpnlBBglQEsGBM7QjOYFIyXN8nM0A5Fzkuc0v0RXMe4AQJScztB21ZJY9wPe-7bufajbDW5UdAHrNC22dXCmT4trXdgcsXWdT_7at7gL3rgY8aHut-ndddj49ts3w_irGty6IZykP_jweY0uKtVEd_Orc_Tx_PS-fCXrt5fV8nFNDMtET6w1nGeVUVRwxg3PwBoNpVaMQ5VZVglNNdhUXivBXc4VGGBMldrpqipgMUd3U26q9zW42MudH0LqEyUrOC-FSJJcbHKZ4GMMrpJdqPcqHCUFORKVE1GZiMoTUTlGL6aj2I2cXPiL_ufqBxoee-g</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Mi, Jiqian</creator><creator>Zhang, Yikai</creator><creator>Li, Hui</creator><creator>Shen, Shengnan</creator><creator>Yang, Yongqiang</creator><creator>Song, Changhui</creator><creator>Zhou, Xin</creator><creator>Duan, Yucong</creator><creator>Lu, Junwen</creator><creator>Mai, Haibo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4404-8845</orcidid></search><sort><creationdate>20230201</creationdate><title>In-situ monitoring laser based directed energy deposition process with deep convolutional neural network</title><author>Mi, Jiqian ; Zhang, Yikai ; Li, Hui ; Shen, Shengnan ; Yang, Yongqiang ; Song, Changhui ; Zhou, Xin ; Duan, Yucong ; Lu, Junwen ; Mai, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-ddc664fca19626c640dcb08ba260f4d2f9b1b0d986ba96e56a0c022a8bebff703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Advanced manufacturing technologies</topic><topic>Artificial neural networks</topic><topic>Business and Management</topic><topic>Control</topic><topic>Deposition</topic><topic>Image segmentation</topic><topic>Laser applications</topic><topic>Lasers</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechatronics</topic><topic>Model accuracy</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Nondestructive testing</topic><topic>Object recognition</topic><topic>Penalty function</topic><topic>Processes</topic><topic>Production</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mi, Jiqian</creatorcontrib><creatorcontrib>Zhang, Yikai</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Shen, Shengnan</creatorcontrib><creatorcontrib>Yang, Yongqiang</creatorcontrib><creatorcontrib>Song, Changhui</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Duan, Yucong</creatorcontrib><creatorcontrib>Lu, Junwen</creatorcontrib><creatorcontrib>Mai, Haibo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mi, Jiqian</au><au>Zhang, Yikai</au><au>Li, Hui</au><au>Shen, Shengnan</au><au>Yang, Yongqiang</au><au>Song, Changhui</au><au>Zhou, Xin</au><au>Duan, Yucong</au><au>Lu, Junwen</au><au>Mai, Haibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ monitoring laser based directed energy deposition process with deep convolutional neural network</atitle><jtitle>Journal of intelligent manufacturing</jtitle><stitle>J Intell Manuf</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>34</volume><issue>2</issue><spage>683</spage><epage>693</epage><pages>683-693</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>Laser based directed energy deposition (L-DED) is a promising type of additive manufacturing technology. The non-destructive testing technology for the quality monitoring of L-DED processed parts is becoming more and more demanding in terms of accuracy, real-time, and ease of operation. This paper introduces a new image recognition system based on a deep convolutional neural network, which uses multiple lightweight architectures to reduce detection time. In order to eliminate the interference better, it improves the penalty function, which effectively improves the accuracy. Judging from the detection results of the data set, the accuracy of the model training reaches 94.71%, which achieves a very good image segmentation effect and solves the technical problem of in-situ monitoring of the L-DED process. This system realizes the positioning of the spatters for the first time, and at the same time, the number of spatters and area of molten pool are correlated to the laser scanning speed and the laser power.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10845-021-01820-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4404-8845</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5515 |
ispartof | Journal of intelligent manufacturing, 2023-02, Vol.34 (2), p.683-693 |
issn | 0956-5515 1572-8145 |
language | eng |
recordid | cdi_proquest_journals_2766899276 |
source | Springer Nature - Complete Springer Journals |
subjects | Accuracy Advanced manufacturing technologies Artificial neural networks Business and Management Control Deposition Image segmentation Laser applications Lasers Machines Manufacturing Mechatronics Model accuracy Monitoring Neural networks Nondestructive testing Object recognition Penalty function Processes Production Robotics |
title | In-situ monitoring laser based directed energy deposition process with deep convolutional neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A35%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20monitoring%20laser%20based%20directed%20energy%20deposition%20process%20with%20deep%20convolutional%20neural%20network&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Mi,%20Jiqian&rft.date=2023-02-01&rft.volume=34&rft.issue=2&rft.spage=683&rft.epage=693&rft.pages=683-693&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-021-01820-0&rft_dat=%3Cproquest_cross%3E2766899276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766899276&rft_id=info:pmid/&rfr_iscdi=true |