In-situ monitoring laser based directed energy deposition process with deep convolutional neural network

Laser based directed energy deposition (L-DED) is a promising type of additive manufacturing technology. The non-destructive testing technology for the quality monitoring of L-DED processed parts is becoming more and more demanding in terms of accuracy, real-time, and ease of operation. This paper i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent manufacturing 2023-02, Vol.34 (2), p.683-693
Hauptverfasser: Mi, Jiqian, Zhang, Yikai, Li, Hui, Shen, Shengnan, Yang, Yongqiang, Song, Changhui, Zhou, Xin, Duan, Yucong, Lu, Junwen, Mai, Haibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 693
container_issue 2
container_start_page 683
container_title Journal of intelligent manufacturing
container_volume 34
creator Mi, Jiqian
Zhang, Yikai
Li, Hui
Shen, Shengnan
Yang, Yongqiang
Song, Changhui
Zhou, Xin
Duan, Yucong
Lu, Junwen
Mai, Haibo
description Laser based directed energy deposition (L-DED) is a promising type of additive manufacturing technology. The non-destructive testing technology for the quality monitoring of L-DED processed parts is becoming more and more demanding in terms of accuracy, real-time, and ease of operation. This paper introduces a new image recognition system based on a deep convolutional neural network, which uses multiple lightweight architectures to reduce detection time. In order to eliminate the interference better, it improves the penalty function, which effectively improves the accuracy. Judging from the detection results of the data set, the accuracy of the model training reaches 94.71%, which achieves a very good image segmentation effect and solves the technical problem of in-situ monitoring of the L-DED process. This system realizes the positioning of the spatters for the first time, and at the same time, the number of spatters and area of molten pool are correlated to the laser scanning speed and the laser power.
doi_str_mv 10.1007/s10845-021-01820-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2766899276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766899276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-ddc664fca19626c640dcb08ba260f4d2f9b1b0d986ba96e56a0c022a8bebff703</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mxYu4kTH1HFo1IlLnC2_EqbksbBTqj673EaJG5cdlb27Gj0IXRL4Z4CFA-RQpnlBBglQEsGBM7QjOYFIyXN8nM0A5Fzkuc0v0RXMe4AQJScztB21ZJY9wPe-7bufajbDW5UdAHrNC22dXCmT4trXdgcsXWdT_7at7gL3rgY8aHut-ndddj49ts3w_irGty6IZykP_jweY0uKtVEd_Orc_Tx_PS-fCXrt5fV8nFNDMtET6w1nGeVUVRwxg3PwBoNpVaMQ5VZVglNNdhUXivBXc4VGGBMldrpqipgMUd3U26q9zW42MudH0LqEyUrOC-FSJJcbHKZ4GMMrpJdqPcqHCUFORKVE1GZiMoTUTlGL6aj2I2cXPiL_ufqBxoee-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766899276</pqid></control><display><type>article</type><title>In-situ monitoring laser based directed energy deposition process with deep convolutional neural network</title><source>Springer Nature - Complete Springer Journals</source><creator>Mi, Jiqian ; Zhang, Yikai ; Li, Hui ; Shen, Shengnan ; Yang, Yongqiang ; Song, Changhui ; Zhou, Xin ; Duan, Yucong ; Lu, Junwen ; Mai, Haibo</creator><creatorcontrib>Mi, Jiqian ; Zhang, Yikai ; Li, Hui ; Shen, Shengnan ; Yang, Yongqiang ; Song, Changhui ; Zhou, Xin ; Duan, Yucong ; Lu, Junwen ; Mai, Haibo</creatorcontrib><description>Laser based directed energy deposition (L-DED) is a promising type of additive manufacturing technology. The non-destructive testing technology for the quality monitoring of L-DED processed parts is becoming more and more demanding in terms of accuracy, real-time, and ease of operation. This paper introduces a new image recognition system based on a deep convolutional neural network, which uses multiple lightweight architectures to reduce detection time. In order to eliminate the interference better, it improves the penalty function, which effectively improves the accuracy. Judging from the detection results of the data set, the accuracy of the model training reaches 94.71%, which achieves a very good image segmentation effect and solves the technical problem of in-situ monitoring of the L-DED process. This system realizes the positioning of the spatters for the first time, and at the same time, the number of spatters and area of molten pool are correlated to the laser scanning speed and the laser power.</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-021-01820-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Advanced manufacturing technologies ; Artificial neural networks ; Business and Management ; Control ; Deposition ; Image segmentation ; Laser applications ; Lasers ; Machines ; Manufacturing ; Mechatronics ; Model accuracy ; Monitoring ; Neural networks ; Nondestructive testing ; Object recognition ; Penalty function ; Processes ; Production ; Robotics</subject><ispartof>Journal of intelligent manufacturing, 2023-02, Vol.34 (2), p.683-693</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-ddc664fca19626c640dcb08ba260f4d2f9b1b0d986ba96e56a0c022a8bebff703</citedby><cites>FETCH-LOGICAL-c249t-ddc664fca19626c640dcb08ba260f4d2f9b1b0d986ba96e56a0c022a8bebff703</cites><orcidid>0000-0002-4404-8845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10845-021-01820-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10845-021-01820-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Mi, Jiqian</creatorcontrib><creatorcontrib>Zhang, Yikai</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Shen, Shengnan</creatorcontrib><creatorcontrib>Yang, Yongqiang</creatorcontrib><creatorcontrib>Song, Changhui</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Duan, Yucong</creatorcontrib><creatorcontrib>Lu, Junwen</creatorcontrib><creatorcontrib>Mai, Haibo</creatorcontrib><title>In-situ monitoring laser based directed energy deposition process with deep convolutional neural network</title><title>Journal of intelligent manufacturing</title><addtitle>J Intell Manuf</addtitle><description>Laser based directed energy deposition (L-DED) is a promising type of additive manufacturing technology. The non-destructive testing technology for the quality monitoring of L-DED processed parts is becoming more and more demanding in terms of accuracy, real-time, and ease of operation. This paper introduces a new image recognition system based on a deep convolutional neural network, which uses multiple lightweight architectures to reduce detection time. In order to eliminate the interference better, it improves the penalty function, which effectively improves the accuracy. Judging from the detection results of the data set, the accuracy of the model training reaches 94.71%, which achieves a very good image segmentation effect and solves the technical problem of in-situ monitoring of the L-DED process. This system realizes the positioning of the spatters for the first time, and at the same time, the number of spatters and area of molten pool are correlated to the laser scanning speed and the laser power.</description><subject>Accuracy</subject><subject>Advanced manufacturing technologies</subject><subject>Artificial neural networks</subject><subject>Business and Management</subject><subject>Control</subject><subject>Deposition</subject><subject>Image segmentation</subject><subject>Laser applications</subject><subject>Lasers</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechatronics</subject><subject>Model accuracy</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Nondestructive testing</subject><subject>Object recognition</subject><subject>Penalty function</subject><subject>Processes</subject><subject>Production</subject><subject>Robotics</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mxYu4kTH1HFo1IlLnC2_EqbksbBTqj673EaJG5cdlb27Gj0IXRL4Z4CFA-RQpnlBBglQEsGBM7QjOYFIyXN8nM0A5Fzkuc0v0RXMe4AQJScztB21ZJY9wPe-7bufajbDW5UdAHrNC22dXCmT4trXdgcsXWdT_7at7gL3rgY8aHut-ndddj49ts3w_irGty6IZykP_jweY0uKtVEd_Orc_Tx_PS-fCXrt5fV8nFNDMtET6w1nGeVUVRwxg3PwBoNpVaMQ5VZVglNNdhUXivBXc4VGGBMldrpqipgMUd3U26q9zW42MudH0LqEyUrOC-FSJJcbHKZ4GMMrpJdqPcqHCUFORKVE1GZiMoTUTlGL6aj2I2cXPiL_ufqBxoee-g</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Mi, Jiqian</creator><creator>Zhang, Yikai</creator><creator>Li, Hui</creator><creator>Shen, Shengnan</creator><creator>Yang, Yongqiang</creator><creator>Song, Changhui</creator><creator>Zhou, Xin</creator><creator>Duan, Yucong</creator><creator>Lu, Junwen</creator><creator>Mai, Haibo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4404-8845</orcidid></search><sort><creationdate>20230201</creationdate><title>In-situ monitoring laser based directed energy deposition process with deep convolutional neural network</title><author>Mi, Jiqian ; Zhang, Yikai ; Li, Hui ; Shen, Shengnan ; Yang, Yongqiang ; Song, Changhui ; Zhou, Xin ; Duan, Yucong ; Lu, Junwen ; Mai, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-ddc664fca19626c640dcb08ba260f4d2f9b1b0d986ba96e56a0c022a8bebff703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Advanced manufacturing technologies</topic><topic>Artificial neural networks</topic><topic>Business and Management</topic><topic>Control</topic><topic>Deposition</topic><topic>Image segmentation</topic><topic>Laser applications</topic><topic>Lasers</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechatronics</topic><topic>Model accuracy</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Nondestructive testing</topic><topic>Object recognition</topic><topic>Penalty function</topic><topic>Processes</topic><topic>Production</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mi, Jiqian</creatorcontrib><creatorcontrib>Zhang, Yikai</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Shen, Shengnan</creatorcontrib><creatorcontrib>Yang, Yongqiang</creatorcontrib><creatorcontrib>Song, Changhui</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Duan, Yucong</creatorcontrib><creatorcontrib>Lu, Junwen</creatorcontrib><creatorcontrib>Mai, Haibo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mi, Jiqian</au><au>Zhang, Yikai</au><au>Li, Hui</au><au>Shen, Shengnan</au><au>Yang, Yongqiang</au><au>Song, Changhui</au><au>Zhou, Xin</au><au>Duan, Yucong</au><au>Lu, Junwen</au><au>Mai, Haibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ monitoring laser based directed energy deposition process with deep convolutional neural network</atitle><jtitle>Journal of intelligent manufacturing</jtitle><stitle>J Intell Manuf</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>34</volume><issue>2</issue><spage>683</spage><epage>693</epage><pages>683-693</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>Laser based directed energy deposition (L-DED) is a promising type of additive manufacturing technology. The non-destructive testing technology for the quality monitoring of L-DED processed parts is becoming more and more demanding in terms of accuracy, real-time, and ease of operation. This paper introduces a new image recognition system based on a deep convolutional neural network, which uses multiple lightweight architectures to reduce detection time. In order to eliminate the interference better, it improves the penalty function, which effectively improves the accuracy. Judging from the detection results of the data set, the accuracy of the model training reaches 94.71%, which achieves a very good image segmentation effect and solves the technical problem of in-situ monitoring of the L-DED process. This system realizes the positioning of the spatters for the first time, and at the same time, the number of spatters and area of molten pool are correlated to the laser scanning speed and the laser power.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10845-021-01820-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4404-8845</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0956-5515
ispartof Journal of intelligent manufacturing, 2023-02, Vol.34 (2), p.683-693
issn 0956-5515
1572-8145
language eng
recordid cdi_proquest_journals_2766899276
source Springer Nature - Complete Springer Journals
subjects Accuracy
Advanced manufacturing technologies
Artificial neural networks
Business and Management
Control
Deposition
Image segmentation
Laser applications
Lasers
Machines
Manufacturing
Mechatronics
Model accuracy
Monitoring
Neural networks
Nondestructive testing
Object recognition
Penalty function
Processes
Production
Robotics
title In-situ monitoring laser based directed energy deposition process with deep convolutional neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A35%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20monitoring%20laser%20based%20directed%20energy%20deposition%20process%20with%20deep%20convolutional%20neural%20network&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Mi,%20Jiqian&rft.date=2023-02-01&rft.volume=34&rft.issue=2&rft.spage=683&rft.epage=693&rft.pages=683-693&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-021-01820-0&rft_dat=%3Cproquest_cross%3E2766899276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766899276&rft_id=info:pmid/&rfr_iscdi=true