Permutation flow shop energy-efficient scheduling with a position-based learning effect
Severe environmental problems have made green scheduling an emerging research hotspot. In this paper, a permutation flow shop energy-efficient scheduling problem that considers multiple criteria is investigated. The aim is to find the optimal job processing sequence and conveyor speed that minimise...
Gespeichert in:
Veröffentlicht in: | International journal of production research 2023-01, Vol.61 (2), p.382-409 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 409 |
---|---|
container_issue | 2 |
container_start_page | 382 |
container_title | International journal of production research |
container_volume | 61 |
creator | Xin, Xu Jiang, Qiangqiang Li, Cui Li, Sihang Chen, Kang |
description | Severe environmental problems have made green scheduling an emerging research hotspot. In this paper, a permutation flow shop energy-efficient scheduling problem that considers multiple criteria is investigated. The aim is to find the optimal job processing sequence and conveyor speed that minimise both the makespan and total energy consumption. In addition to two types of common criteria, namely, machine-based criterion (i.e. sequence-dependent setup time) and energy-based criteria (including both the transportation time control strategy and machine shutdown strategy), a human-based criterion (i.e. a position-based learning effect) is introduced. A bi-objective programming model is developed, and a multi-objective iterated greedy (MOIG) is designed to reach the Pareto front of the model. Considering that there are two types of decisions in the model (i.e. job sequence and conveyor speed), two algorithm alternatives are designed based on the job sequence and conveyor speed, respectively. Meanwhile, an acceptance criterion with advantages in terms of the convergence speed and solution diversity is proposed. Existing algorithms, including NSGA-II and MOEA/D, are introduced to evaluate the performance of the MOIG. The results emphasise the efficiency of the MOIG. Overall, the model and MOIG effectively improve the green efficiency of enterprises and can reasonably control operating costs. |
doi_str_mv | 10.1080/00207543.2021.2008041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2766883568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766883568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-a52a9f39bb70bda0f50c36e28757f2cd41727ae1125bef35417e26dcc2f1747f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QQh43pqPzSa9KcUvEPSg6C1ksxMb2SY12VL6781SxZs5TEjmeWbgReickhklilwSwogUNZ8xwmgp5a-mB2hCedNUQqn3QzQZmWqEjtFJzp-kHKHqCXp7hrTaDGbwMWDXxy3Oy7jGECB97CpwzlsPYcDZLqHb9D584K0fltjgdcx-tKrWZOhwDyaFsV0csMMpOnKmz3D2c0_R6-3Ny-K-eny6e1hcP1aWz8VQGcHM3PF520rSdoY4QSxvgCkppGO2q6lk0gClTLTguChvYE1nLXNU1tLxKbrYz12n-LWBPOjPuEmhrNRMNo1SXDSqUGJP2RRzTuD0OvmVSTtNiR4z1L8Z6jFD_ZNh8fDeAxuDz3-W4pxJwet5Qa72iA8uppXZxtR3ejC7PiaXTLBF4_9v-QYN_INO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766883568</pqid></control><display><type>article</type><title>Permutation flow shop energy-efficient scheduling with a position-based learning effect</title><source>Business Source Complete</source><source>Taylor & Francis Journals Complete</source><creator>Xin, Xu ; Jiang, Qiangqiang ; Li, Cui ; Li, Sihang ; Chen, Kang</creator><creatorcontrib>Xin, Xu ; Jiang, Qiangqiang ; Li, Cui ; Li, Sihang ; Chen, Kang</creatorcontrib><description>Severe environmental problems have made green scheduling an emerging research hotspot. In this paper, a permutation flow shop energy-efficient scheduling problem that considers multiple criteria is investigated. The aim is to find the optimal job processing sequence and conveyor speed that minimise both the makespan and total energy consumption. In addition to two types of common criteria, namely, machine-based criterion (i.e. sequence-dependent setup time) and energy-based criteria (including both the transportation time control strategy and machine shutdown strategy), a human-based criterion (i.e. a position-based learning effect) is introduced. A bi-objective programming model is developed, and a multi-objective iterated greedy (MOIG) is designed to reach the Pareto front of the model. Considering that there are two types of decisions in the model (i.e. job sequence and conveyor speed), two algorithm alternatives are designed based on the job sequence and conveyor speed, respectively. Meanwhile, an acceptance criterion with advantages in terms of the convergence speed and solution diversity is proposed. Existing algorithms, including NSGA-II and MOEA/D, are introduced to evaluate the performance of the MOIG. The results emphasise the efficiency of the MOIG. Overall, the model and MOIG effectively improve the green efficiency of enterprises and can reasonably control operating costs.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2021.2008041</identifier><language>eng</language><publisher>London: Taylor & Francis</publisher><subject>Acceptance criteria ; Algorithms ; Conveyors ; Energy consumption ; energy-efficient scheduling ; Learning ; learning effect ; multi-objective iterated greedy (MOIG) ; Multiple criterion ; Permutation flow shop ; Permutations ; Scheduling ; sequence-dependent setup time (SDST) ; Time dependence</subject><ispartof>International journal of production research, 2023-01, Vol.61 (2), p.382-409</ispartof><rights>2021 Informa UK Limited, trading as Taylor & Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-a52a9f39bb70bda0f50c36e28757f2cd41727ae1125bef35417e26dcc2f1747f3</citedby><cites>FETCH-LOGICAL-c395t-a52a9f39bb70bda0f50c36e28757f2cd41727ae1125bef35417e26dcc2f1747f3</cites><orcidid>0000-0001-8874-9726 ; 0000-0003-3053-5770 ; 0000-0003-1484-1209 ; 0000-0002-0780-156X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207543.2021.2008041$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207543.2021.2008041$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,59645,60434</link.rule.ids></links><search><creatorcontrib>Xin, Xu</creatorcontrib><creatorcontrib>Jiang, Qiangqiang</creatorcontrib><creatorcontrib>Li, Cui</creatorcontrib><creatorcontrib>Li, Sihang</creatorcontrib><creatorcontrib>Chen, Kang</creatorcontrib><title>Permutation flow shop energy-efficient scheduling with a position-based learning effect</title><title>International journal of production research</title><description>Severe environmental problems have made green scheduling an emerging research hotspot. In this paper, a permutation flow shop energy-efficient scheduling problem that considers multiple criteria is investigated. The aim is to find the optimal job processing sequence and conveyor speed that minimise both the makespan and total energy consumption. In addition to two types of common criteria, namely, machine-based criterion (i.e. sequence-dependent setup time) and energy-based criteria (including both the transportation time control strategy and machine shutdown strategy), a human-based criterion (i.e. a position-based learning effect) is introduced. A bi-objective programming model is developed, and a multi-objective iterated greedy (MOIG) is designed to reach the Pareto front of the model. Considering that there are two types of decisions in the model (i.e. job sequence and conveyor speed), two algorithm alternatives are designed based on the job sequence and conveyor speed, respectively. Meanwhile, an acceptance criterion with advantages in terms of the convergence speed and solution diversity is proposed. Existing algorithms, including NSGA-II and MOEA/D, are introduced to evaluate the performance of the MOIG. The results emphasise the efficiency of the MOIG. Overall, the model and MOIG effectively improve the green efficiency of enterprises and can reasonably control operating costs.</description><subject>Acceptance criteria</subject><subject>Algorithms</subject><subject>Conveyors</subject><subject>Energy consumption</subject><subject>energy-efficient scheduling</subject><subject>Learning</subject><subject>learning effect</subject><subject>multi-objective iterated greedy (MOIG)</subject><subject>Multiple criterion</subject><subject>Permutation flow shop</subject><subject>Permutations</subject><subject>Scheduling</subject><subject>sequence-dependent setup time (SDST)</subject><subject>Time dependence</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QQh43pqPzSa9KcUvEPSg6C1ksxMb2SY12VL6781SxZs5TEjmeWbgReickhklilwSwogUNZ8xwmgp5a-mB2hCedNUQqn3QzQZmWqEjtFJzp-kHKHqCXp7hrTaDGbwMWDXxy3Oy7jGECB97CpwzlsPYcDZLqHb9D584K0fltjgdcx-tKrWZOhwDyaFsV0csMMpOnKmz3D2c0_R6-3Ny-K-eny6e1hcP1aWz8VQGcHM3PF520rSdoY4QSxvgCkppGO2q6lk0gClTLTguChvYE1nLXNU1tLxKbrYz12n-LWBPOjPuEmhrNRMNo1SXDSqUGJP2RRzTuD0OvmVSTtNiR4z1L8Z6jFD_ZNh8fDeAxuDz3-W4pxJwet5Qa72iA8uppXZxtR3ejC7PiaXTLBF4_9v-QYN_INO</recordid><startdate>20230117</startdate><enddate>20230117</enddate><creator>Xin, Xu</creator><creator>Jiang, Qiangqiang</creator><creator>Li, Cui</creator><creator>Li, Sihang</creator><creator>Chen, Kang</creator><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8874-9726</orcidid><orcidid>https://orcid.org/0000-0003-3053-5770</orcidid><orcidid>https://orcid.org/0000-0003-1484-1209</orcidid><orcidid>https://orcid.org/0000-0002-0780-156X</orcidid></search><sort><creationdate>20230117</creationdate><title>Permutation flow shop energy-efficient scheduling with a position-based learning effect</title><author>Xin, Xu ; Jiang, Qiangqiang ; Li, Cui ; Li, Sihang ; Chen, Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-a52a9f39bb70bda0f50c36e28757f2cd41727ae1125bef35417e26dcc2f1747f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acceptance criteria</topic><topic>Algorithms</topic><topic>Conveyors</topic><topic>Energy consumption</topic><topic>energy-efficient scheduling</topic><topic>Learning</topic><topic>learning effect</topic><topic>multi-objective iterated greedy (MOIG)</topic><topic>Multiple criterion</topic><topic>Permutation flow shop</topic><topic>Permutations</topic><topic>Scheduling</topic><topic>sequence-dependent setup time (SDST)</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Xu</creatorcontrib><creatorcontrib>Jiang, Qiangqiang</creatorcontrib><creatorcontrib>Li, Cui</creatorcontrib><creatorcontrib>Li, Sihang</creatorcontrib><creatorcontrib>Chen, Kang</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, Xu</au><au>Jiang, Qiangqiang</au><au>Li, Cui</au><au>Li, Sihang</au><au>Chen, Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permutation flow shop energy-efficient scheduling with a position-based learning effect</atitle><jtitle>International journal of production research</jtitle><date>2023-01-17</date><risdate>2023</risdate><volume>61</volume><issue>2</issue><spage>382</spage><epage>409</epage><pages>382-409</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>Severe environmental problems have made green scheduling an emerging research hotspot. In this paper, a permutation flow shop energy-efficient scheduling problem that considers multiple criteria is investigated. The aim is to find the optimal job processing sequence and conveyor speed that minimise both the makespan and total energy consumption. In addition to two types of common criteria, namely, machine-based criterion (i.e. sequence-dependent setup time) and energy-based criteria (including both the transportation time control strategy and machine shutdown strategy), a human-based criterion (i.e. a position-based learning effect) is introduced. A bi-objective programming model is developed, and a multi-objective iterated greedy (MOIG) is designed to reach the Pareto front of the model. Considering that there are two types of decisions in the model (i.e. job sequence and conveyor speed), two algorithm alternatives are designed based on the job sequence and conveyor speed, respectively. Meanwhile, an acceptance criterion with advantages in terms of the convergence speed and solution diversity is proposed. Existing algorithms, including NSGA-II and MOEA/D, are introduced to evaluate the performance of the MOIG. The results emphasise the efficiency of the MOIG. Overall, the model and MOIG effectively improve the green efficiency of enterprises and can reasonably control operating costs.</abstract><cop>London</cop><pub>Taylor & Francis</pub><doi>10.1080/00207543.2021.2008041</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-8874-9726</orcidid><orcidid>https://orcid.org/0000-0003-3053-5770</orcidid><orcidid>https://orcid.org/0000-0003-1484-1209</orcidid><orcidid>https://orcid.org/0000-0002-0780-156X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7543 |
ispartof | International journal of production research, 2023-01, Vol.61 (2), p.382-409 |
issn | 0020-7543 1366-588X |
language | eng |
recordid | cdi_proquest_journals_2766883568 |
source | Business Source Complete; Taylor & Francis Journals Complete |
subjects | Acceptance criteria Algorithms Conveyors Energy consumption energy-efficient scheduling Learning learning effect multi-objective iterated greedy (MOIG) Multiple criterion Permutation flow shop Permutations Scheduling sequence-dependent setup time (SDST) Time dependence |
title | Permutation flow shop energy-efficient scheduling with a position-based learning effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permutation%20flow%20shop%20energy-efficient%20scheduling%20with%20a%20position-based%20learning%20effect&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Xin,%20Xu&rft.date=2023-01-17&rft.volume=61&rft.issue=2&rft.spage=382&rft.epage=409&rft.pages=382-409&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2021.2008041&rft_dat=%3Cproquest_cross%3E2766883568%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766883568&rft_id=info:pmid/&rfr_iscdi=true |