Permutation flow shop energy-efficient scheduling with a position-based learning effect

Severe environmental problems have made green scheduling an emerging research hotspot. In this paper, a permutation flow shop energy-efficient scheduling problem that considers multiple criteria is investigated. The aim is to find the optimal job processing sequence and conveyor speed that minimise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2023-01, Vol.61 (2), p.382-409
Hauptverfasser: Xin, Xu, Jiang, Qiangqiang, Li, Cui, Li, Sihang, Chen, Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 409
container_issue 2
container_start_page 382
container_title International journal of production research
container_volume 61
creator Xin, Xu
Jiang, Qiangqiang
Li, Cui
Li, Sihang
Chen, Kang
description Severe environmental problems have made green scheduling an emerging research hotspot. In this paper, a permutation flow shop energy-efficient scheduling problem that considers multiple criteria is investigated. The aim is to find the optimal job processing sequence and conveyor speed that minimise both the makespan and total energy consumption. In addition to two types of common criteria, namely, machine-based criterion (i.e. sequence-dependent setup time) and energy-based criteria (including both the transportation time control strategy and machine shutdown strategy), a human-based criterion (i.e. a position-based learning effect) is introduced. A bi-objective programming model is developed, and a multi-objective iterated greedy (MOIG) is designed to reach the Pareto front of the model. Considering that there are two types of decisions in the model (i.e. job sequence and conveyor speed), two algorithm alternatives are designed based on the job sequence and conveyor speed, respectively. Meanwhile, an acceptance criterion with advantages in terms of the convergence speed and solution diversity is proposed. Existing algorithms, including NSGA-II and MOEA/D, are introduced to evaluate the performance of the MOIG. The results emphasise the efficiency of the MOIG. Overall, the model and MOIG effectively improve the green efficiency of enterprises and can reasonably control operating costs.
doi_str_mv 10.1080/00207543.2021.2008041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2766883568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766883568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-a52a9f39bb70bda0f50c36e28757f2cd41727ae1125bef35417e26dcc2f1747f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QQh43pqPzSa9KcUvEPSg6C1ksxMb2SY12VL6781SxZs5TEjmeWbgReickhklilwSwogUNZ8xwmgp5a-mB2hCedNUQqn3QzQZmWqEjtFJzp-kHKHqCXp7hrTaDGbwMWDXxy3Oy7jGECB97CpwzlsPYcDZLqHb9D584K0fltjgdcx-tKrWZOhwDyaFsV0csMMpOnKmz3D2c0_R6-3Ny-K-eny6e1hcP1aWz8VQGcHM3PF520rSdoY4QSxvgCkppGO2q6lk0gClTLTguChvYE1nLXNU1tLxKbrYz12n-LWBPOjPuEmhrNRMNo1SXDSqUGJP2RRzTuD0OvmVSTtNiR4z1L8Z6jFD_ZNh8fDeAxuDz3-W4pxJwet5Qa72iA8uppXZxtR3ejC7PiaXTLBF4_9v-QYN_INO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766883568</pqid></control><display><type>article</type><title>Permutation flow shop energy-efficient scheduling with a position-based learning effect</title><source>Business Source Complete</source><source>Taylor &amp; Francis Journals Complete</source><creator>Xin, Xu ; Jiang, Qiangqiang ; Li, Cui ; Li, Sihang ; Chen, Kang</creator><creatorcontrib>Xin, Xu ; Jiang, Qiangqiang ; Li, Cui ; Li, Sihang ; Chen, Kang</creatorcontrib><description>Severe environmental problems have made green scheduling an emerging research hotspot. In this paper, a permutation flow shop energy-efficient scheduling problem that considers multiple criteria is investigated. The aim is to find the optimal job processing sequence and conveyor speed that minimise both the makespan and total energy consumption. In addition to two types of common criteria, namely, machine-based criterion (i.e. sequence-dependent setup time) and energy-based criteria (including both the transportation time control strategy and machine shutdown strategy), a human-based criterion (i.e. a position-based learning effect) is introduced. A bi-objective programming model is developed, and a multi-objective iterated greedy (MOIG) is designed to reach the Pareto front of the model. Considering that there are two types of decisions in the model (i.e. job sequence and conveyor speed), two algorithm alternatives are designed based on the job sequence and conveyor speed, respectively. Meanwhile, an acceptance criterion with advantages in terms of the convergence speed and solution diversity is proposed. Existing algorithms, including NSGA-II and MOEA/D, are introduced to evaluate the performance of the MOIG. The results emphasise the efficiency of the MOIG. Overall, the model and MOIG effectively improve the green efficiency of enterprises and can reasonably control operating costs.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2021.2008041</identifier><language>eng</language><publisher>London: Taylor &amp; Francis</publisher><subject>Acceptance criteria ; Algorithms ; Conveyors ; Energy consumption ; energy-efficient scheduling ; Learning ; learning effect ; multi-objective iterated greedy (MOIG) ; Multiple criterion ; Permutation flow shop ; Permutations ; Scheduling ; sequence-dependent setup time (SDST) ; Time dependence</subject><ispartof>International journal of production research, 2023-01, Vol.61 (2), p.382-409</ispartof><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-a52a9f39bb70bda0f50c36e28757f2cd41727ae1125bef35417e26dcc2f1747f3</citedby><cites>FETCH-LOGICAL-c395t-a52a9f39bb70bda0f50c36e28757f2cd41727ae1125bef35417e26dcc2f1747f3</cites><orcidid>0000-0001-8874-9726 ; 0000-0003-3053-5770 ; 0000-0003-1484-1209 ; 0000-0002-0780-156X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207543.2021.2008041$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207543.2021.2008041$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,59645,60434</link.rule.ids></links><search><creatorcontrib>Xin, Xu</creatorcontrib><creatorcontrib>Jiang, Qiangqiang</creatorcontrib><creatorcontrib>Li, Cui</creatorcontrib><creatorcontrib>Li, Sihang</creatorcontrib><creatorcontrib>Chen, Kang</creatorcontrib><title>Permutation flow shop energy-efficient scheduling with a position-based learning effect</title><title>International journal of production research</title><description>Severe environmental problems have made green scheduling an emerging research hotspot. In this paper, a permutation flow shop energy-efficient scheduling problem that considers multiple criteria is investigated. The aim is to find the optimal job processing sequence and conveyor speed that minimise both the makespan and total energy consumption. In addition to two types of common criteria, namely, machine-based criterion (i.e. sequence-dependent setup time) and energy-based criteria (including both the transportation time control strategy and machine shutdown strategy), a human-based criterion (i.e. a position-based learning effect) is introduced. A bi-objective programming model is developed, and a multi-objective iterated greedy (MOIG) is designed to reach the Pareto front of the model. Considering that there are two types of decisions in the model (i.e. job sequence and conveyor speed), two algorithm alternatives are designed based on the job sequence and conveyor speed, respectively. Meanwhile, an acceptance criterion with advantages in terms of the convergence speed and solution diversity is proposed. Existing algorithms, including NSGA-II and MOEA/D, are introduced to evaluate the performance of the MOIG. The results emphasise the efficiency of the MOIG. Overall, the model and MOIG effectively improve the green efficiency of enterprises and can reasonably control operating costs.</description><subject>Acceptance criteria</subject><subject>Algorithms</subject><subject>Conveyors</subject><subject>Energy consumption</subject><subject>energy-efficient scheduling</subject><subject>Learning</subject><subject>learning effect</subject><subject>multi-objective iterated greedy (MOIG)</subject><subject>Multiple criterion</subject><subject>Permutation flow shop</subject><subject>Permutations</subject><subject>Scheduling</subject><subject>sequence-dependent setup time (SDST)</subject><subject>Time dependence</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QQh43pqPzSa9KcUvEPSg6C1ksxMb2SY12VL6781SxZs5TEjmeWbgReickhklilwSwogUNZ8xwmgp5a-mB2hCedNUQqn3QzQZmWqEjtFJzp-kHKHqCXp7hrTaDGbwMWDXxy3Oy7jGECB97CpwzlsPYcDZLqHb9D584K0fltjgdcx-tKrWZOhwDyaFsV0csMMpOnKmz3D2c0_R6-3Ny-K-eny6e1hcP1aWz8VQGcHM3PF520rSdoY4QSxvgCkppGO2q6lk0gClTLTguChvYE1nLXNU1tLxKbrYz12n-LWBPOjPuEmhrNRMNo1SXDSqUGJP2RRzTuD0OvmVSTtNiR4z1L8Z6jFD_ZNh8fDeAxuDz3-W4pxJwet5Qa72iA8uppXZxtR3ejC7PiaXTLBF4_9v-QYN_INO</recordid><startdate>20230117</startdate><enddate>20230117</enddate><creator>Xin, Xu</creator><creator>Jiang, Qiangqiang</creator><creator>Li, Cui</creator><creator>Li, Sihang</creator><creator>Chen, Kang</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8874-9726</orcidid><orcidid>https://orcid.org/0000-0003-3053-5770</orcidid><orcidid>https://orcid.org/0000-0003-1484-1209</orcidid><orcidid>https://orcid.org/0000-0002-0780-156X</orcidid></search><sort><creationdate>20230117</creationdate><title>Permutation flow shop energy-efficient scheduling with a position-based learning effect</title><author>Xin, Xu ; Jiang, Qiangqiang ; Li, Cui ; Li, Sihang ; Chen, Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-a52a9f39bb70bda0f50c36e28757f2cd41727ae1125bef35417e26dcc2f1747f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acceptance criteria</topic><topic>Algorithms</topic><topic>Conveyors</topic><topic>Energy consumption</topic><topic>energy-efficient scheduling</topic><topic>Learning</topic><topic>learning effect</topic><topic>multi-objective iterated greedy (MOIG)</topic><topic>Multiple criterion</topic><topic>Permutation flow shop</topic><topic>Permutations</topic><topic>Scheduling</topic><topic>sequence-dependent setup time (SDST)</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Xu</creatorcontrib><creatorcontrib>Jiang, Qiangqiang</creatorcontrib><creatorcontrib>Li, Cui</creatorcontrib><creatorcontrib>Li, Sihang</creatorcontrib><creatorcontrib>Chen, Kang</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, Xu</au><au>Jiang, Qiangqiang</au><au>Li, Cui</au><au>Li, Sihang</au><au>Chen, Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permutation flow shop energy-efficient scheduling with a position-based learning effect</atitle><jtitle>International journal of production research</jtitle><date>2023-01-17</date><risdate>2023</risdate><volume>61</volume><issue>2</issue><spage>382</spage><epage>409</epage><pages>382-409</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>Severe environmental problems have made green scheduling an emerging research hotspot. In this paper, a permutation flow shop energy-efficient scheduling problem that considers multiple criteria is investigated. The aim is to find the optimal job processing sequence and conveyor speed that minimise both the makespan and total energy consumption. In addition to two types of common criteria, namely, machine-based criterion (i.e. sequence-dependent setup time) and energy-based criteria (including both the transportation time control strategy and machine shutdown strategy), a human-based criterion (i.e. a position-based learning effect) is introduced. A bi-objective programming model is developed, and a multi-objective iterated greedy (MOIG) is designed to reach the Pareto front of the model. Considering that there are two types of decisions in the model (i.e. job sequence and conveyor speed), two algorithm alternatives are designed based on the job sequence and conveyor speed, respectively. Meanwhile, an acceptance criterion with advantages in terms of the convergence speed and solution diversity is proposed. Existing algorithms, including NSGA-II and MOEA/D, are introduced to evaluate the performance of the MOIG. The results emphasise the efficiency of the MOIG. Overall, the model and MOIG effectively improve the green efficiency of enterprises and can reasonably control operating costs.</abstract><cop>London</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00207543.2021.2008041</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-8874-9726</orcidid><orcidid>https://orcid.org/0000-0003-3053-5770</orcidid><orcidid>https://orcid.org/0000-0003-1484-1209</orcidid><orcidid>https://orcid.org/0000-0002-0780-156X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7543
ispartof International journal of production research, 2023-01, Vol.61 (2), p.382-409
issn 0020-7543
1366-588X
language eng
recordid cdi_proquest_journals_2766883568
source Business Source Complete; Taylor & Francis Journals Complete
subjects Acceptance criteria
Algorithms
Conveyors
Energy consumption
energy-efficient scheduling
Learning
learning effect
multi-objective iterated greedy (MOIG)
Multiple criterion
Permutation flow shop
Permutations
Scheduling
sequence-dependent setup time (SDST)
Time dependence
title Permutation flow shop energy-efficient scheduling with a position-based learning effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permutation%20flow%20shop%20energy-efficient%20scheduling%20with%20a%20position-based%20learning%20effect&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Xin,%20Xu&rft.date=2023-01-17&rft.volume=61&rft.issue=2&rft.spage=382&rft.epage=409&rft.pages=382-409&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2021.2008041&rft_dat=%3Cproquest_cross%3E2766883568%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766883568&rft_id=info:pmid/&rfr_iscdi=true