Tailor: Altering Skip Connections for Resource-Efficient Inference

Deep neural networks use skip connections to improve training convergence. However, these skip connections are costly in hardware, requiring extra buffers and increasing on- and off-chip memory utilization and bandwidth requirements. In this paper, we show that skip connections can be optimized for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Weng, Olivia, Marcano, Gabriel, Loncar, Vladimir, Khodamoradi, Alireza, Sheybani, Nojan, Meza, Andres, Koushanfar, Farinaz, Denolf, Kristof, Duarte, Javier Mauricio, Kastner, Ryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep neural networks use skip connections to improve training convergence. However, these skip connections are costly in hardware, requiring extra buffers and increasing on- and off-chip memory utilization and bandwidth requirements. In this paper, we show that skip connections can be optimized for hardware when tackled with a hardware-software codesign approach. We argue that while a network's skip connections are needed for the network to learn, they can later be removed or shortened to provide a more hardware efficient implementation with minimal to no accuracy loss. We introduce Tailor, a codesign tool whose hardware-aware training algorithm gradually removes or shortens a fully trained network's skip connections to lower their hardware cost. Tailor improves resource utilization by up to 34% for BRAMs, 13% for FFs, and 16% for LUTs for on-chip, dataflow-style architectures. Tailor increases performance by 30% and reduces memory bandwidth by 45% for a 2D processing element array architecture.
ISSN:2331-8422