Multicriteria cuts and size-constrained k-cuts in hypergraphs

We address counting and optimization variants of multicriteria global min-cut and size-constrained min- k -cut in hypergraphs. For an r -rank n -vertex hypergraph endowed with t hyperedge-cost functions, we show that the number of multiobjective min-cuts is O ( r 2 tr n 3 t - 1 ) . In particular, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2023, Vol.197 (1), p.27-69
Hauptverfasser: Beideman, Calvin, Chandrasekaran, Karthekeyan, Xu, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 1
container_start_page 27
container_title Mathematical programming
container_volume 197
creator Beideman, Calvin
Chandrasekaran, Karthekeyan
Xu, Chao
description We address counting and optimization variants of multicriteria global min-cut and size-constrained min- k -cut in hypergraphs. For an r -rank n -vertex hypergraph endowed with t hyperedge-cost functions, we show that the number of multiobjective min-cuts is O ( r 2 tr n 3 t - 1 ) . In particular, this shows that the number of parametric min-cuts in constant rank hypergraphs for a constant number of criteria is strongly polynomial, thus resolving an open question by Aissi et al. (Math Program 154(1–2):3–28, 2015). In addition, we give randomized algorithms to enumerate all multiobjective min-cuts and all pareto-optimal cuts in strongly polynomial-time. We also address node-budgeted multiobjective min-cuts: For an n -vertex hypergraph endowed with t vertex-weight functions, we show that the number of node-budgeted multiobjective min-cuts is O ( r 2 r n t + 2 ) , where r is the rank of the hypergraph, and the number of node-budgeted b -multiobjective min-cuts for a fixed budget-vector b ∈ R ≥ 0 t is O ( n 2 ) . We show that min- k -cut in hypergraphs subject to constant lower bounds on part sizes is solvable in polynomial-time for constant k , thus resolving an open problem posed by Guinez and Queyranne (Unpublished manuscript. . See also , 2012). Our technique also shows that the number of optimal solutions is polynomial. All of our results build on the random contraction approach of Karger (Proceedings of the 4th annual ACM-SIAM symposium on discrete algorithms, SODA, pp 21–30, 1993). Our techniques illustrate the versatility of the random contraction approach to address counting and algorithmic problems concerning multiobjective min-cuts and size-constrained k -cuts in hypergraphs.
doi_str_mv 10.1007/s10107-021-01732-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2766756057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766756057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-85f2d5d4a9152d79a41d54a0a426effd68c0f70125101ae5fb4f14a6d3ae6c873</originalsourceid><addsrcrecordid>eNp9kLtOw0AQRVcIJELgB6gsUS_M7NMpKFAEASmIBurVso_EIdhm1y7C1-PESHRUU8w9dzSHkEuEawTQNxkBQVNgSAE1ZxSOyAQFV1QooY7JBIBJKhXCKTnLeQMAyMtyQm6f-21XuVR1IVW2cH2XC1v7Ilffgbqmzl2yVR188UEPu6ou1rs2pFWy7Tqfk5Notzlc_M4peXu4f50_0uXL4ml-t6SO46yjpYzMSy_sDCXzemYFeiksWMFUiNGr0kHUgEwOb9gg47uIKKzy3AblSs2n5GrsbVPz1YfcmU3Tp3o4aZhWSksFcp9iY8qlJucUomlT9WnTziCYvSYzajKDJnPQZGCA-AjlIVyvQvqr_of6Aa_UajA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766756057</pqid></control><display><type>article</type><title>Multicriteria cuts and size-constrained k-cuts in hypergraphs</title><source>SpringerLink Journals</source><source>EBSCOhost Business Source Complete</source><creator>Beideman, Calvin ; Chandrasekaran, Karthekeyan ; Xu, Chao</creator><creatorcontrib>Beideman, Calvin ; Chandrasekaran, Karthekeyan ; Xu, Chao</creatorcontrib><description>We address counting and optimization variants of multicriteria global min-cut and size-constrained min- k -cut in hypergraphs. For an r -rank n -vertex hypergraph endowed with t hyperedge-cost functions, we show that the number of multiobjective min-cuts is O ( r 2 tr n 3 t - 1 ) . In particular, this shows that the number of parametric min-cuts in constant rank hypergraphs for a constant number of criteria is strongly polynomial, thus resolving an open question by Aissi et al. (Math Program 154(1–2):3–28, 2015). In addition, we give randomized algorithms to enumerate all multiobjective min-cuts and all pareto-optimal cuts in strongly polynomial-time. We also address node-budgeted multiobjective min-cuts: For an n -vertex hypergraph endowed with t vertex-weight functions, we show that the number of node-budgeted multiobjective min-cuts is O ( r 2 r n t + 2 ) , where r is the rank of the hypergraph, and the number of node-budgeted b -multiobjective min-cuts for a fixed budget-vector b ∈ R ≥ 0 t is O ( n 2 ) . We show that min- k -cut in hypergraphs subject to constant lower bounds on part sizes is solvable in polynomial-time for constant k , thus resolving an open problem posed by Guinez and Queyranne (Unpublished manuscript. . See also , 2012). Our technique also shows that the number of optimal solutions is polynomial. All of our results build on the random contraction approach of Karger (Proceedings of the 4th annual ACM-SIAM symposium on discrete algorithms, SODA, pp 21–30, 1993). Our techniques illustrate the versatility of the random contraction approach to address counting and algorithmic problems concerning multiobjective min-cuts and size-constrained k -cuts in hypergraphs.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-021-01732-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Cost function ; Full Length Paper ; Graph theory ; Graphs ; Lower bounds ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Multiple criterion ; Nodes ; Numerical Analysis ; Optimization ; Pareto optimum ; Polynomials ; Theoretical ; Weighting functions</subject><ispartof>Mathematical programming, 2023, Vol.197 (1), p.27-69</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-85f2d5d4a9152d79a41d54a0a426effd68c0f70125101ae5fb4f14a6d3ae6c873</citedby><cites>FETCH-LOGICAL-c319t-85f2d5d4a9152d79a41d54a0a426effd68c0f70125101ae5fb4f14a6d3ae6c873</cites><orcidid>0000-0002-3421-7238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-021-01732-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-021-01732-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Beideman, Calvin</creatorcontrib><creatorcontrib>Chandrasekaran, Karthekeyan</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><title>Multicriteria cuts and size-constrained k-cuts in hypergraphs</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>We address counting and optimization variants of multicriteria global min-cut and size-constrained min- k -cut in hypergraphs. For an r -rank n -vertex hypergraph endowed with t hyperedge-cost functions, we show that the number of multiobjective min-cuts is O ( r 2 tr n 3 t - 1 ) . In particular, this shows that the number of parametric min-cuts in constant rank hypergraphs for a constant number of criteria is strongly polynomial, thus resolving an open question by Aissi et al. (Math Program 154(1–2):3–28, 2015). In addition, we give randomized algorithms to enumerate all multiobjective min-cuts and all pareto-optimal cuts in strongly polynomial-time. We also address node-budgeted multiobjective min-cuts: For an n -vertex hypergraph endowed with t vertex-weight functions, we show that the number of node-budgeted multiobjective min-cuts is O ( r 2 r n t + 2 ) , where r is the rank of the hypergraph, and the number of node-budgeted b -multiobjective min-cuts for a fixed budget-vector b ∈ R ≥ 0 t is O ( n 2 ) . We show that min- k -cut in hypergraphs subject to constant lower bounds on part sizes is solvable in polynomial-time for constant k , thus resolving an open problem posed by Guinez and Queyranne (Unpublished manuscript. . See also , 2012). Our technique also shows that the number of optimal solutions is polynomial. All of our results build on the random contraction approach of Karger (Proceedings of the 4th annual ACM-SIAM symposium on discrete algorithms, SODA, pp 21–30, 1993). Our techniques illustrate the versatility of the random contraction approach to address counting and algorithmic problems concerning multiobjective min-cuts and size-constrained k -cuts in hypergraphs.</description><subject>Algorithms</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Cost function</subject><subject>Full Length Paper</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Multiple criterion</subject><subject>Nodes</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Pareto optimum</subject><subject>Polynomials</subject><subject>Theoretical</subject><subject>Weighting functions</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOw0AQRVcIJELgB6gsUS_M7NMpKFAEASmIBurVso_EIdhm1y7C1-PESHRUU8w9dzSHkEuEawTQNxkBQVNgSAE1ZxSOyAQFV1QooY7JBIBJKhXCKTnLeQMAyMtyQm6f-21XuVR1IVW2cH2XC1v7Ilffgbqmzl2yVR188UEPu6ou1rs2pFWy7Tqfk5Notzlc_M4peXu4f50_0uXL4ml-t6SO46yjpYzMSy_sDCXzemYFeiksWMFUiNGr0kHUgEwOb9gg47uIKKzy3AblSs2n5GrsbVPz1YfcmU3Tp3o4aZhWSksFcp9iY8qlJucUomlT9WnTziCYvSYzajKDJnPQZGCA-AjlIVyvQvqr_of6Aa_UajA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Beideman, Calvin</creator><creator>Chandrasekaran, Karthekeyan</creator><creator>Xu, Chao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3421-7238</orcidid></search><sort><creationdate>2023</creationdate><title>Multicriteria cuts and size-constrained k-cuts in hypergraphs</title><author>Beideman, Calvin ; Chandrasekaran, Karthekeyan ; Xu, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-85f2d5d4a9152d79a41d54a0a426effd68c0f70125101ae5fb4f14a6d3ae6c873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Cost function</topic><topic>Full Length Paper</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Multiple criterion</topic><topic>Nodes</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Pareto optimum</topic><topic>Polynomials</topic><topic>Theoretical</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beideman, Calvin</creatorcontrib><creatorcontrib>Chandrasekaran, Karthekeyan</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beideman, Calvin</au><au>Chandrasekaran, Karthekeyan</au><au>Xu, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicriteria cuts and size-constrained k-cuts in hypergraphs</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2023</date><risdate>2023</risdate><volume>197</volume><issue>1</issue><spage>27</spage><epage>69</epage><pages>27-69</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>We address counting and optimization variants of multicriteria global min-cut and size-constrained min- k -cut in hypergraphs. For an r -rank n -vertex hypergraph endowed with t hyperedge-cost functions, we show that the number of multiobjective min-cuts is O ( r 2 tr n 3 t - 1 ) . In particular, this shows that the number of parametric min-cuts in constant rank hypergraphs for a constant number of criteria is strongly polynomial, thus resolving an open question by Aissi et al. (Math Program 154(1–2):3–28, 2015). In addition, we give randomized algorithms to enumerate all multiobjective min-cuts and all pareto-optimal cuts in strongly polynomial-time. We also address node-budgeted multiobjective min-cuts: For an n -vertex hypergraph endowed with t vertex-weight functions, we show that the number of node-budgeted multiobjective min-cuts is O ( r 2 r n t + 2 ) , where r is the rank of the hypergraph, and the number of node-budgeted b -multiobjective min-cuts for a fixed budget-vector b ∈ R ≥ 0 t is O ( n 2 ) . We show that min- k -cut in hypergraphs subject to constant lower bounds on part sizes is solvable in polynomial-time for constant k , thus resolving an open problem posed by Guinez and Queyranne (Unpublished manuscript. . See also , 2012). Our technique also shows that the number of optimal solutions is polynomial. All of our results build on the random contraction approach of Karger (Proceedings of the 4th annual ACM-SIAM symposium on discrete algorithms, SODA, pp 21–30, 1993). Our techniques illustrate the versatility of the random contraction approach to address counting and algorithmic problems concerning multiobjective min-cuts and size-constrained k -cuts in hypergraphs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-021-01732-0</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0002-3421-7238</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2023, Vol.197 (1), p.27-69
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_journals_2766756057
source SpringerLink Journals; EBSCOhost Business Source Complete
subjects Algorithms
Calculus of Variations and Optimal Control
Optimization
Combinatorics
Cost function
Full Length Paper
Graph theory
Graphs
Lower bounds
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Multiple criterion
Nodes
Numerical Analysis
Optimization
Pareto optimum
Polynomials
Theoretical
Weighting functions
title Multicriteria cuts and size-constrained k-cuts in hypergraphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T07%3A11%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicriteria%20cuts%20and%20size-constrained%20k-cuts%20in%20hypergraphs&rft.jtitle=Mathematical%20programming&rft.au=Beideman,%20Calvin&rft.date=2023&rft.volume=197&rft.issue=1&rft.spage=27&rft.epage=69&rft.pages=27-69&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-021-01732-0&rft_dat=%3Cproquest_cross%3E2766756057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766756057&rft_id=info:pmid/&rfr_iscdi=true