On Geodesic Convexity in Mycielskian of Graphs

The convexity induced by the geodesics in a graph G is called the geodesic convexity of G . Mycielski graphs preserve the property of being triangle-free and many parameters such as power domination number, coloring number, determining number and recently general position number have been determined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced computational intelligence and intelligent informatics 2023-01, Vol.27 (1), p.119-123
Hauptverfasser: Gajavalli, S., Greeni, A. Berin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123
container_issue 1
container_start_page 119
container_title Journal of advanced computational intelligence and intelligent informatics
container_volume 27
creator Gajavalli, S.
Greeni, A. Berin
description The convexity induced by the geodesics in a graph G is called the geodesic convexity of G . Mycielski graphs preserve the property of being triangle-free and many parameters such as power domination number, coloring number, determining number and recently general position number have been determined for them. In this work, we determine the geodesic convexity parameters viz., convexity, geodetic iteration, geodetic, and hull numbers for Mycielski graphs for which the underlying graphs considered are path, cycle, star, and complete graph.
doi_str_mv 10.20965/jaciii.2023.p0119
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2766706677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766706677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-e1656cf40b3669d34d6024a28a69921957a080389a402c4bb9433ad4af5a418a3</originalsourceid><addsrcrecordid>eNotkFFLwzAUhYMoOOb-gE8FnztvctM0eZShdTDZiz6HuzTF1NnWpBP3762bD4d7DhzugY-xWw5LAUYV9y25EMIUBC4H4NxcsBnXGnMNXF5OHiXmwBGu2SKlFmDyQoHkM7bcdlnl-9qn4LJV3337nzAes9BlL0cX_D59BOqyvsmqSMN7umFXDe2TX_zfOXt7enxdPeebbbVePWxyh6UYc89VoVwjYYdKmRplrUBIEpqUMYKboiTQgNqQBOHkbmckItWSmoIk14Rzdnf-O8T-6-DTaNv-ELtp0opSqRImlVNLnFsu9ilF39ghhk-KR8vBntDYMxr7h8ae0OAvh99VuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766706677</pqid></control><display><type>article</type><title>On Geodesic Convexity in Mycielskian of Graphs</title><source>DOAJ Directory of Open Access Journals</source><creator>Gajavalli, S. ; Greeni, A. Berin</creator><creatorcontrib>Gajavalli, S. ; Greeni, A. Berin</creatorcontrib><description>The convexity induced by the geodesics in a graph G is called the geodesic convexity of G . Mycielski graphs preserve the property of being triangle-free and many parameters such as power domination number, coloring number, determining number and recently general position number have been determined for them. In this work, we determine the geodesic convexity parameters viz., convexity, geodetic iteration, geodetic, and hull numbers for Mycielski graphs for which the underlying graphs considered are path, cycle, star, and complete graph.</description><identifier>ISSN: 1343-0130</identifier><identifier>EISSN: 1883-8014</identifier><identifier>DOI: 10.20965/jaciii.2023.p0119</identifier><language>eng</language><publisher>Tokyo: Fuji Technology Press Co. Ltd</publisher><subject>Convexity ; Game theory ; Geodesy ; Graphs ; Parameters</subject><ispartof>Journal of advanced computational intelligence and intelligent informatics, 2023-01, Vol.27 (1), p.119-123</ispartof><rights>Copyright © 2023 Fuji Technology Press Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-e1656cf40b3669d34d6024a28a69921957a080389a402c4bb9433ad4af5a418a3</citedby><cites>FETCH-LOGICAL-c372t-e1656cf40b3669d34d6024a28a69921957a080389a402c4bb9433ad4af5a418a3</cites><orcidid>0000-0002-3722-3342 ; 0000-0001-9459-3449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Gajavalli, S.</creatorcontrib><creatorcontrib>Greeni, A. Berin</creatorcontrib><title>On Geodesic Convexity in Mycielskian of Graphs</title><title>Journal of advanced computational intelligence and intelligent informatics</title><description>The convexity induced by the geodesics in a graph G is called the geodesic convexity of G . Mycielski graphs preserve the property of being triangle-free and many parameters such as power domination number, coloring number, determining number and recently general position number have been determined for them. In this work, we determine the geodesic convexity parameters viz., convexity, geodetic iteration, geodetic, and hull numbers for Mycielski graphs for which the underlying graphs considered are path, cycle, star, and complete graph.</description><subject>Convexity</subject><subject>Game theory</subject><subject>Geodesy</subject><subject>Graphs</subject><subject>Parameters</subject><issn>1343-0130</issn><issn>1883-8014</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkFFLwzAUhYMoOOb-gE8FnztvctM0eZShdTDZiz6HuzTF1NnWpBP3762bD4d7DhzugY-xWw5LAUYV9y25EMIUBC4H4NxcsBnXGnMNXF5OHiXmwBGu2SKlFmDyQoHkM7bcdlnl-9qn4LJV3337nzAes9BlL0cX_D59BOqyvsmqSMN7umFXDe2TX_zfOXt7enxdPeebbbVePWxyh6UYc89VoVwjYYdKmRplrUBIEpqUMYKboiTQgNqQBOHkbmckItWSmoIk14Rzdnf-O8T-6-DTaNv-ELtp0opSqRImlVNLnFsu9ilF39ghhk-KR8vBntDYMxr7h8ae0OAvh99VuQ</recordid><startdate>20230120</startdate><enddate>20230120</enddate><creator>Gajavalli, S.</creator><creator>Greeni, A. Berin</creator><general>Fuji Technology Press Co. Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3722-3342</orcidid><orcidid>https://orcid.org/0000-0001-9459-3449</orcidid></search><sort><creationdate>20230120</creationdate><title>On Geodesic Convexity in Mycielskian of Graphs</title><author>Gajavalli, S. ; Greeni, A. Berin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-e1656cf40b3669d34d6024a28a69921957a080389a402c4bb9433ad4af5a418a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convexity</topic><topic>Game theory</topic><topic>Geodesy</topic><topic>Graphs</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gajavalli, S.</creatorcontrib><creatorcontrib>Greeni, A. Berin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gajavalli, S.</au><au>Greeni, A. Berin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Geodesic Convexity in Mycielskian of Graphs</atitle><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle><date>2023-01-20</date><risdate>2023</risdate><volume>27</volume><issue>1</issue><spage>119</spage><epage>123</epage><pages>119-123</pages><issn>1343-0130</issn><eissn>1883-8014</eissn><abstract>The convexity induced by the geodesics in a graph G is called the geodesic convexity of G . Mycielski graphs preserve the property of being triangle-free and many parameters such as power domination number, coloring number, determining number and recently general position number have been determined for them. In this work, we determine the geodesic convexity parameters viz., convexity, geodetic iteration, geodetic, and hull numbers for Mycielski graphs for which the underlying graphs considered are path, cycle, star, and complete graph.</abstract><cop>Tokyo</cop><pub>Fuji Technology Press Co. Ltd</pub><doi>10.20965/jaciii.2023.p0119</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3722-3342</orcidid><orcidid>https://orcid.org/0000-0001-9459-3449</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1343-0130
ispartof Journal of advanced computational intelligence and intelligent informatics, 2023-01, Vol.27 (1), p.119-123
issn 1343-0130
1883-8014
language eng
recordid cdi_proquest_journals_2766706677
source DOAJ Directory of Open Access Journals
subjects Convexity
Game theory
Geodesy
Graphs
Parameters
title On Geodesic Convexity in Mycielskian of Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Geodesic%20Convexity%20in%20Mycielskian%20of%20Graphs&rft.jtitle=Journal%20of%20advanced%20computational%20intelligence%20and%20intelligent%20informatics&rft.au=Gajavalli,%20S.&rft.date=2023-01-20&rft.volume=27&rft.issue=1&rft.spage=119&rft.epage=123&rft.pages=119-123&rft.issn=1343-0130&rft.eissn=1883-8014&rft_id=info:doi/10.20965/jaciii.2023.p0119&rft_dat=%3Cproquest_cross%3E2766706677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766706677&rft_id=info:pmid/&rfr_iscdi=true