Ambulance detection for smart traffic light applications with fuzzy controller

In the development of intelligent cities, the automation of vehicular mobility is one of the strong points of research, where intelligent traffic lights stand out. It is essential in this field to prioritize emergency vehicles that can help save lives, where every second counts in favor of the trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2022-10, Vol.12 (5), p.4876
Hauptverfasser: Jimenez-Moreno, Robinson, Baquero, Javier Eduardo Martinez, Rodriguez Umaña, Luis Alfredo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 4876
container_title International journal of electrical and computer engineering (Malacca, Malacca)
container_volume 12
creator Jimenez-Moreno, Robinson
Baquero, Javier Eduardo Martinez
Rodriguez Umaña, Luis Alfredo
description In the development of intelligent cities, the automation of vehicular mobility is one of the strong points of research, where intelligent traffic lights stand out. It is essential in this field to prioritize emergency vehicles that can help save lives, where every second counts in favor of the transfer of a patient or injured person. This paper presents an artificial intelligence algorithm based on two stages, one is the recognition of emergency vehicles through a ResNet-50 and the other is a fuzzy inference system for timing control of a traffic light, both lead to an intelligent traffic light. An application of traffic light vehicular flow control for automatic preemption when detecting emergency vehicles, specifically ambulances, is oriented. The training parameters of the network, which achieves 100% accuracy with confidence levels between 65% with vehicle occlusion and 99% in direct view, are presented. The traffic light cycles are able to extend the green time of the traffic light with almost 50% in favor of the road that must yield the priority, in relation to not using the fuzzy inference system.
doi_str_mv 10.11591/ijece.v12i5.pp4876-4882
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2766672770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766672770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-39f2ab0240e07b15a77b4f781eef7a9b5a5a680ed487dbd03a4098a5ce2330e33</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EElXpP1hineJnxllWFS-pgg2sLcexqas0CbYDar-etGV17-JoRvcghClZUior-hB2zrrlD2VBLodBKCgLoRS7QjMGjBVMgrqeOlGqUEDULVqkFGoiBAgCpZyht9W-HlvTWYcbl53Noe-w7yNOexMzztF4Hyxuw9c2YzMMbbDmxCT8G_IW-_F4PGDbdzn2beviHbrxpk1u8Z9z9Pn0-LF-KTbvz6_r1aawVEAueOWZqQkTxBGoqTQAtfCgqHMeTFVLI02piGumRU3dEG4EqZSR1jHOieN8ju4vd4fYf48uZb3rx9hNLzWDsiyBAZCJUhfKxj6l6LweYph2HTQl-ixQnwXqs0B9EahPAvkfTeFoPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766672770</pqid></control><display><type>article</type><title>Ambulance detection for smart traffic light applications with fuzzy controller</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jimenez-Moreno, Robinson ; Baquero, Javier Eduardo Martinez ; Rodriguez Umaña, Luis Alfredo</creator><creatorcontrib>Jimenez-Moreno, Robinson ; Baquero, Javier Eduardo Martinez ; Rodriguez Umaña, Luis Alfredo</creatorcontrib><description>In the development of intelligent cities, the automation of vehicular mobility is one of the strong points of research, where intelligent traffic lights stand out. It is essential in this field to prioritize emergency vehicles that can help save lives, where every second counts in favor of the transfer of a patient or injured person. This paper presents an artificial intelligence algorithm based on two stages, one is the recognition of emergency vehicles through a ResNet-50 and the other is a fuzzy inference system for timing control of a traffic light, both lead to an intelligent traffic light. An application of traffic light vehicular flow control for automatic preemption when detecting emergency vehicles, specifically ambulances, is oriented. The training parameters of the network, which achieves 100% accuracy with confidence levels between 65% with vehicle occlusion and 99% in direct view, are presented. The traffic light cycles are able to extend the green time of the traffic light with almost 50% in favor of the road that must yield the priority, in relation to not using the fuzzy inference system.</description><identifier>ISSN: 2088-8708</identifier><identifier>EISSN: 2722-2578</identifier><identifier>EISSN: 2088-8708</identifier><identifier>DOI: 10.11591/ijece.v12i5.pp4876-4882</identifier><language>eng</language><publisher>Yogyakarta: IAES Institute of Advanced Engineering and Science</publisher><subject>Algorithms ; Ambulances ; Artificial intelligence ; Automatic control ; Automatic vehicle identification systems ; Confidence intervals ; Emergency vehicles ; Flow control ; Fuzzy control ; Inference ; Light ; Occlusion ; Towns ; Traffic control ; Traffic signals</subject><ispartof>International journal of electrical and computer engineering (Malacca, Malacca), 2022-10, Vol.12 (5), p.4876</ispartof><rights>Copyright IAES Institute of Advanced Engineering and Science 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4377-7867 ; 0000-0002-4812-3734 ; 0000-0001-7346-5640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids></links><search><creatorcontrib>Jimenez-Moreno, Robinson</creatorcontrib><creatorcontrib>Baquero, Javier Eduardo Martinez</creatorcontrib><creatorcontrib>Rodriguez Umaña, Luis Alfredo</creatorcontrib><title>Ambulance detection for smart traffic light applications with fuzzy controller</title><title>International journal of electrical and computer engineering (Malacca, Malacca)</title><description>In the development of intelligent cities, the automation of vehicular mobility is one of the strong points of research, where intelligent traffic lights stand out. It is essential in this field to prioritize emergency vehicles that can help save lives, where every second counts in favor of the transfer of a patient or injured person. This paper presents an artificial intelligence algorithm based on two stages, one is the recognition of emergency vehicles through a ResNet-50 and the other is a fuzzy inference system for timing control of a traffic light, both lead to an intelligent traffic light. An application of traffic light vehicular flow control for automatic preemption when detecting emergency vehicles, specifically ambulances, is oriented. The training parameters of the network, which achieves 100% accuracy with confidence levels between 65% with vehicle occlusion and 99% in direct view, are presented. The traffic light cycles are able to extend the green time of the traffic light with almost 50% in favor of the road that must yield the priority, in relation to not using the fuzzy inference system.</description><subject>Algorithms</subject><subject>Ambulances</subject><subject>Artificial intelligence</subject><subject>Automatic control</subject><subject>Automatic vehicle identification systems</subject><subject>Confidence intervals</subject><subject>Emergency vehicles</subject><subject>Flow control</subject><subject>Fuzzy control</subject><subject>Inference</subject><subject>Light</subject><subject>Occlusion</subject><subject>Towns</subject><subject>Traffic control</subject><subject>Traffic signals</subject><issn>2088-8708</issn><issn>2722-2578</issn><issn>2088-8708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkMtOwzAQRS0EElXpP1hineJnxllWFS-pgg2sLcexqas0CbYDar-etGV17-JoRvcghClZUior-hB2zrrlD2VBLodBKCgLoRS7QjMGjBVMgrqeOlGqUEDULVqkFGoiBAgCpZyht9W-HlvTWYcbl53Noe-w7yNOexMzztF4Hyxuw9c2YzMMbbDmxCT8G_IW-_F4PGDbdzn2beviHbrxpk1u8Z9z9Pn0-LF-KTbvz6_r1aawVEAueOWZqQkTxBGoqTQAtfCgqHMeTFVLI02piGumRU3dEG4EqZSR1jHOieN8ju4vd4fYf48uZb3rx9hNLzWDsiyBAZCJUhfKxj6l6LweYph2HTQl-ixQnwXqs0B9EahPAvkfTeFoPQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Jimenez-Moreno, Robinson</creator><creator>Baquero, Javier Eduardo Martinez</creator><creator>Rodriguez Umaña, Luis Alfredo</creator><general>IAES Institute of Advanced Engineering and Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4377-7867</orcidid><orcidid>https://orcid.org/0000-0002-4812-3734</orcidid><orcidid>https://orcid.org/0000-0001-7346-5640</orcidid></search><sort><creationdate>20221001</creationdate><title>Ambulance detection for smart traffic light applications with fuzzy controller</title><author>Jimenez-Moreno, Robinson ; Baquero, Javier Eduardo Martinez ; Rodriguez Umaña, Luis Alfredo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-39f2ab0240e07b15a77b4f781eef7a9b5a5a680ed487dbd03a4098a5ce2330e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Ambulances</topic><topic>Artificial intelligence</topic><topic>Automatic control</topic><topic>Automatic vehicle identification systems</topic><topic>Confidence intervals</topic><topic>Emergency vehicles</topic><topic>Flow control</topic><topic>Fuzzy control</topic><topic>Inference</topic><topic>Light</topic><topic>Occlusion</topic><topic>Towns</topic><topic>Traffic control</topic><topic>Traffic signals</topic><toplevel>online_resources</toplevel><creatorcontrib>Jimenez-Moreno, Robinson</creatorcontrib><creatorcontrib>Baquero, Javier Eduardo Martinez</creatorcontrib><creatorcontrib>Rodriguez Umaña, Luis Alfredo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jimenez-Moreno, Robinson</au><au>Baquero, Javier Eduardo Martinez</au><au>Rodriguez Umaña, Luis Alfredo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ambulance detection for smart traffic light applications with fuzzy controller</atitle><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>12</volume><issue>5</issue><spage>4876</spage><pages>4876-</pages><issn>2088-8708</issn><eissn>2722-2578</eissn><eissn>2088-8708</eissn><abstract>In the development of intelligent cities, the automation of vehicular mobility is one of the strong points of research, where intelligent traffic lights stand out. It is essential in this field to prioritize emergency vehicles that can help save lives, where every second counts in favor of the transfer of a patient or injured person. This paper presents an artificial intelligence algorithm based on two stages, one is the recognition of emergency vehicles through a ResNet-50 and the other is a fuzzy inference system for timing control of a traffic light, both lead to an intelligent traffic light. An application of traffic light vehicular flow control for automatic preemption when detecting emergency vehicles, specifically ambulances, is oriented. The training parameters of the network, which achieves 100% accuracy with confidence levels between 65% with vehicle occlusion and 99% in direct view, are presented. The traffic light cycles are able to extend the green time of the traffic light with almost 50% in favor of the road that must yield the priority, in relation to not using the fuzzy inference system.</abstract><cop>Yogyakarta</cop><pub>IAES Institute of Advanced Engineering and Science</pub><doi>10.11591/ijece.v12i5.pp4876-4882</doi><orcidid>https://orcid.org/0000-0003-4377-7867</orcidid><orcidid>https://orcid.org/0000-0002-4812-3734</orcidid><orcidid>https://orcid.org/0000-0001-7346-5640</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2088-8708
ispartof International journal of electrical and computer engineering (Malacca, Malacca), 2022-10, Vol.12 (5), p.4876
issn 2088-8708
2722-2578
2088-8708
language eng
recordid cdi_proquest_journals_2766672770
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Ambulances
Artificial intelligence
Automatic control
Automatic vehicle identification systems
Confidence intervals
Emergency vehicles
Flow control
Fuzzy control
Inference
Light
Occlusion
Towns
Traffic control
Traffic signals
title Ambulance detection for smart traffic light applications with fuzzy controller
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A00%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ambulance%20detection%20for%20smart%20traffic%20light%20applications%20with%20fuzzy%20controller&rft.jtitle=International%20journal%20of%20electrical%20and%20computer%20engineering%20(Malacca,%20Malacca)&rft.au=Jimenez-Moreno,%20Robinson&rft.date=2022-10-01&rft.volume=12&rft.issue=5&rft.spage=4876&rft.pages=4876-&rft.issn=2088-8708&rft.eissn=2722-2578&rft_id=info:doi/10.11591/ijece.v12i5.pp4876-4882&rft_dat=%3Cproquest_cross%3E2766672770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766672770&rft_id=info:pmid/&rfr_iscdi=true