Grouping based radio frequency identification anti-collision protocols for dense internet of things application

Radio frequency identification (RFID) is an important internet of things (IoT) enabling technology. In RFIDs collision occur among tags because tags share communication channel. This is called tag collision problem. The problem becomes catastrophic when dense population of tags are deployed like in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2022-12, Vol.12 (6), p.5848
Hauptverfasser: Umelo, Nnamdi H., Noordin, Nor K., A. Rasid, Mohd Fadlee, Geok, Tan K., Hashim, Fazirulhisyam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 5848
container_title International journal of electrical and computer engineering (Malacca, Malacca)
container_volume 12
creator Umelo, Nnamdi H.
Noordin, Nor K.
A. Rasid, Mohd Fadlee
Geok, Tan K.
Hashim, Fazirulhisyam
description Radio frequency identification (RFID) is an important internet of things (IoT) enabling technology. In RFIDs collision occur among tags because tags share communication channel. This is called tag collision problem. The problem becomes catastrophic when dense population of tags are deployed like in IoT. Hence, the need to enhance existing dynamic frame slotted ALOHA (DFSA) based electronic product code (EPC) C1G2 media access control (MAC) protocol. Firstly, this paper validates through simulation the DFSA theory that efficiency of the RFID system is maximum when the number tags is approximately equal to the frame size. Furthermore, literature review shows tag grouping is becoming popular to improving the efficiency of the RFID system. This paper analyzes selected grouping-based algorithms. Their underlining principles are discussed including their tag estimation methods. The algorithms were implemented in MATLAB while extensive Monte Carlo simulation was performed to evaluate their strengths and weaknesses. Results show that with higher tag density, fuzzy C-means based algorithm (FCMBG) outperformed traditional DFSA by over 40% in terms of throughput rate. The results also demonstrate FCMBG bettered other grouping-based algorithms (GB-DFSA and GBSA) whose tag estimation method are based on collision slots in terms slot efficiency by over 10% and also in terms of identification time.
doi_str_mv 10.11591/ijece.v12i6.pp5848-5860
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2766672707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766672707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c202t-e918e3285e87add9fcbd9e415a2a6d52c57fced99040b9c50cf4b37d7a20044a3</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWLTfIeB5a5JNNtmjFK1CwYueQzaZaMq6WZNU6Lc3_XOaefB4M--HEKZkRano6WPYgYXVH2WhW82zUFw1QnXkCi2YZKxhQqrruhOlGiWJukXLnMNAOJecyE4sUNykuJ_D9IUHk8HhZFyI2Cf43cNkDzg4mErwwZoS4oRNFY2N4xjyUc4pllhlxj4mXK0ZcJgKpAkKjh6X75qcsZnn8ZJwj268GTMsL_MOfb48f6xfm-375m39tG0sI6w00FMFLVMClDTO9d4OrgdOhWGmc4JZIb0F1_eEk6G3gljPh1Y6aRip7Ux7hx7OufXFWiUXvYv7NNWTmsmu6ySTRFaXOrtsijkn8HpO4cekg6ZEnwjrE2F9IqzPhPWRcPsPaWx1Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766672707</pqid></control><display><type>article</type><title>Grouping based radio frequency identification anti-collision protocols for dense internet of things application</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Umelo, Nnamdi H. ; Noordin, Nor K. ; A. Rasid, Mohd Fadlee ; Geok, Tan K. ; Hashim, Fazirulhisyam</creator><creatorcontrib>Umelo, Nnamdi H. ; Noordin, Nor K. ; A. Rasid, Mohd Fadlee ; Geok, Tan K. ; Hashim, Fazirulhisyam</creatorcontrib><description>Radio frequency identification (RFID) is an important internet of things (IoT) enabling technology. In RFIDs collision occur among tags because tags share communication channel. This is called tag collision problem. The problem becomes catastrophic when dense population of tags are deployed like in IoT. Hence, the need to enhance existing dynamic frame slotted ALOHA (DFSA) based electronic product code (EPC) C1G2 media access control (MAC) protocol. Firstly, this paper validates through simulation the DFSA theory that efficiency of the RFID system is maximum when the number tags is approximately equal to the frame size. Furthermore, literature review shows tag grouping is becoming popular to improving the efficiency of the RFID system. This paper analyzes selected grouping-based algorithms. Their underlining principles are discussed including their tag estimation methods. The algorithms were implemented in MATLAB while extensive Monte Carlo simulation was performed to evaluate their strengths and weaknesses. Results show that with higher tag density, fuzzy C-means based algorithm (FCMBG) outperformed traditional DFSA by over 40% in terms of throughput rate. The results also demonstrate FCMBG bettered other grouping-based algorithms (GB-DFSA and GBSA) whose tag estimation method are based on collision slots in terms slot efficiency by over 10% and also in terms of identification time.</description><identifier>ISSN: 2088-8708</identifier><identifier>EISSN: 2722-2578</identifier><identifier>EISSN: 2088-8708</identifier><identifier>DOI: 10.11591/ijece.v12i6.pp5848-5860</identifier><language>eng</language><publisher>Yogyakarta: IAES Institute of Advanced Engineering and Science</publisher><subject>Access control ; Algorithms ; Automatic identification ; Bar codes ; Collision avoidance ; Computer simulation ; Efficiency ; Internet of Things ; Literature reviews ; Monte Carlo simulation ; Radio frequency identification ; Tags</subject><ispartof>International journal of electrical and computer engineering (Malacca, Malacca), 2022-12, Vol.12 (6), p.5848</ispartof><rights>Copyright IAES Institute of Advanced Engineering and Science 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c202t-e918e3285e87add9fcbd9e415a2a6d52c57fced99040b9c50cf4b37d7a20044a3</citedby><orcidid>0000-0001-8446-3173 ; 0000-0003-1880-5643 ; 0000-0001-7047-4939 ; 0000-0002-3876-9849 ; 0000-0003-1606-1871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Umelo, Nnamdi H.</creatorcontrib><creatorcontrib>Noordin, Nor K.</creatorcontrib><creatorcontrib>A. Rasid, Mohd Fadlee</creatorcontrib><creatorcontrib>Geok, Tan K.</creatorcontrib><creatorcontrib>Hashim, Fazirulhisyam</creatorcontrib><title>Grouping based radio frequency identification anti-collision protocols for dense internet of things application</title><title>International journal of electrical and computer engineering (Malacca, Malacca)</title><description>Radio frequency identification (RFID) is an important internet of things (IoT) enabling technology. In RFIDs collision occur among tags because tags share communication channel. This is called tag collision problem. The problem becomes catastrophic when dense population of tags are deployed like in IoT. Hence, the need to enhance existing dynamic frame slotted ALOHA (DFSA) based electronic product code (EPC) C1G2 media access control (MAC) protocol. Firstly, this paper validates through simulation the DFSA theory that efficiency of the RFID system is maximum when the number tags is approximately equal to the frame size. Furthermore, literature review shows tag grouping is becoming popular to improving the efficiency of the RFID system. This paper analyzes selected grouping-based algorithms. Their underlining principles are discussed including their tag estimation methods. The algorithms were implemented in MATLAB while extensive Monte Carlo simulation was performed to evaluate their strengths and weaknesses. Results show that with higher tag density, fuzzy C-means based algorithm (FCMBG) outperformed traditional DFSA by over 40% in terms of throughput rate. The results also demonstrate FCMBG bettered other grouping-based algorithms (GB-DFSA and GBSA) whose tag estimation method are based on collision slots in terms slot efficiency by over 10% and also in terms of identification time.</description><subject>Access control</subject><subject>Algorithms</subject><subject>Automatic identification</subject><subject>Bar codes</subject><subject>Collision avoidance</subject><subject>Computer simulation</subject><subject>Efficiency</subject><subject>Internet of Things</subject><subject>Literature reviews</subject><subject>Monte Carlo simulation</subject><subject>Radio frequency identification</subject><subject>Tags</subject><issn>2088-8708</issn><issn>2722-2578</issn><issn>2088-8708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkE9LAzEQxYMoWLTfIeB5a5JNNtmjFK1CwYueQzaZaMq6WZNU6Lc3_XOaefB4M--HEKZkRano6WPYgYXVH2WhW82zUFw1QnXkCi2YZKxhQqrruhOlGiWJukXLnMNAOJecyE4sUNykuJ_D9IUHk8HhZFyI2Cf43cNkDzg4mErwwZoS4oRNFY2N4xjyUc4pllhlxj4mXK0ZcJgKpAkKjh6X75qcsZnn8ZJwj268GTMsL_MOfb48f6xfm-375m39tG0sI6w00FMFLVMClDTO9d4OrgdOhWGmc4JZIb0F1_eEk6G3gljPh1Y6aRip7Ux7hx7OufXFWiUXvYv7NNWTmsmu6ySTRFaXOrtsijkn8HpO4cekg6ZEnwjrE2F9IqzPhPWRcPsPaWx1Xw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Umelo, Nnamdi H.</creator><creator>Noordin, Nor K.</creator><creator>A. Rasid, Mohd Fadlee</creator><creator>Geok, Tan K.</creator><creator>Hashim, Fazirulhisyam</creator><general>IAES Institute of Advanced Engineering and Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8446-3173</orcidid><orcidid>https://orcid.org/0000-0003-1880-5643</orcidid><orcidid>https://orcid.org/0000-0001-7047-4939</orcidid><orcidid>https://orcid.org/0000-0002-3876-9849</orcidid><orcidid>https://orcid.org/0000-0003-1606-1871</orcidid></search><sort><creationdate>20221201</creationdate><title>Grouping based radio frequency identification anti-collision protocols for dense internet of things application</title><author>Umelo, Nnamdi H. ; Noordin, Nor K. ; A. Rasid, Mohd Fadlee ; Geok, Tan K. ; Hashim, Fazirulhisyam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c202t-e918e3285e87add9fcbd9e415a2a6d52c57fced99040b9c50cf4b37d7a20044a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Access control</topic><topic>Algorithms</topic><topic>Automatic identification</topic><topic>Bar codes</topic><topic>Collision avoidance</topic><topic>Computer simulation</topic><topic>Efficiency</topic><topic>Internet of Things</topic><topic>Literature reviews</topic><topic>Monte Carlo simulation</topic><topic>Radio frequency identification</topic><topic>Tags</topic><toplevel>online_resources</toplevel><creatorcontrib>Umelo, Nnamdi H.</creatorcontrib><creatorcontrib>Noordin, Nor K.</creatorcontrib><creatorcontrib>A. Rasid, Mohd Fadlee</creatorcontrib><creatorcontrib>Geok, Tan K.</creatorcontrib><creatorcontrib>Hashim, Fazirulhisyam</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Umelo, Nnamdi H.</au><au>Noordin, Nor K.</au><au>A. Rasid, Mohd Fadlee</au><au>Geok, Tan K.</au><au>Hashim, Fazirulhisyam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grouping based radio frequency identification anti-collision protocols for dense internet of things application</atitle><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>12</volume><issue>6</issue><spage>5848</spage><pages>5848-</pages><issn>2088-8708</issn><eissn>2722-2578</eissn><eissn>2088-8708</eissn><abstract>Radio frequency identification (RFID) is an important internet of things (IoT) enabling technology. In RFIDs collision occur among tags because tags share communication channel. This is called tag collision problem. The problem becomes catastrophic when dense population of tags are deployed like in IoT. Hence, the need to enhance existing dynamic frame slotted ALOHA (DFSA) based electronic product code (EPC) C1G2 media access control (MAC) protocol. Firstly, this paper validates through simulation the DFSA theory that efficiency of the RFID system is maximum when the number tags is approximately equal to the frame size. Furthermore, literature review shows tag grouping is becoming popular to improving the efficiency of the RFID system. This paper analyzes selected grouping-based algorithms. Their underlining principles are discussed including their tag estimation methods. The algorithms were implemented in MATLAB while extensive Monte Carlo simulation was performed to evaluate their strengths and weaknesses. Results show that with higher tag density, fuzzy C-means based algorithm (FCMBG) outperformed traditional DFSA by over 40% in terms of throughput rate. The results also demonstrate FCMBG bettered other grouping-based algorithms (GB-DFSA and GBSA) whose tag estimation method are based on collision slots in terms slot efficiency by over 10% and also in terms of identification time.</abstract><cop>Yogyakarta</cop><pub>IAES Institute of Advanced Engineering and Science</pub><doi>10.11591/ijece.v12i6.pp5848-5860</doi><orcidid>https://orcid.org/0000-0001-8446-3173</orcidid><orcidid>https://orcid.org/0000-0003-1880-5643</orcidid><orcidid>https://orcid.org/0000-0001-7047-4939</orcidid><orcidid>https://orcid.org/0000-0002-3876-9849</orcidid><orcidid>https://orcid.org/0000-0003-1606-1871</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2088-8708
ispartof International journal of electrical and computer engineering (Malacca, Malacca), 2022-12, Vol.12 (6), p.5848
issn 2088-8708
2722-2578
2088-8708
language eng
recordid cdi_proquest_journals_2766672707
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Access control
Algorithms
Automatic identification
Bar codes
Collision avoidance
Computer simulation
Efficiency
Internet of Things
Literature reviews
Monte Carlo simulation
Radio frequency identification
Tags
title Grouping based radio frequency identification anti-collision protocols for dense internet of things application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grouping%20based%20radio%20frequency%20identification%20anti-collision%20protocols%20for%20dense%20internet%20of%20things%20application&rft.jtitle=International%20journal%20of%20electrical%20and%20computer%20engineering%20(Malacca,%20Malacca)&rft.au=Umelo,%20Nnamdi%20H.&rft.date=2022-12-01&rft.volume=12&rft.issue=6&rft.spage=5848&rft.pages=5848-&rft.issn=2088-8708&rft.eissn=2722-2578&rft_id=info:doi/10.11591/ijece.v12i6.pp5848-5860&rft_dat=%3Cproquest_cross%3E2766672707%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766672707&rft_id=info:pmid/&rfr_iscdi=true